
Improving the Consistency and Usefulness of Architecture Descriptions:
Guidelines for Architects

Rebekka Wohlrab∗†, Ulf Eliasson∗‡, Patrizio Pelliccione∗§, Rogardt Heldal∗¶
∗Chalmers | University of Gothenburg, Gothenburg, Sweden

†Systemite AB, Gothenburg, Sweden
‡Vinnter AB, Gothenburg, Sweden

§University of L’Aquila, L’Aquila, Italy
¶Western Norway University of Applied Sciences, Bergen, Norway

Email: wohlrab@chalmers.se, ulf.eliasson@vinnter.se, patrizio.pelliccione@gu.se, rogardt.heldal@hvl.no

Abstract—

©2019 IEEE — Accepted to the 2019 IEEE International Conference on Software Architecture (ICSA’19), Technical Track

The need to support software architecture evo-
lution has been well recognized, even more since the rise of
agile methods. However, assuring the conformance between
architecture descriptions and the implementation remains chal-
lenging. Inconsistencies emanate among multiple architecture
descriptions, and between architecture descriptions and code.
As a consequence, architecture descriptions are not always
trusted and used to the extent that their authors wish for. In
this paper, we present two surveys with 93 and 72 participants
to examine architectural inconsistencies, with a focus on how
they evolve over time and can be mitigated using practical
guidelines. We identified the importance of capturing emerging
elements to keep the architecture description consistent with
the implementation, and consider the current-state and future-
state architecture separately. Consequences of inconsistencies
typically arise at later stages, especially if an architecture
description concerns multiple teams. Our guidelines suggest to
limit the upfront architecture to stable decisions, while paying
attention to concerns that matter across team borders. In the
ideal case, companies should aim to integrate architects into
the teams to capture emerging aspects with time.

Keywords-architectural inconsistencies; architectural confor-
mance; agile architecture; boundary objects; survey; question-
naire; empirical software engineering

I. INTRODUCTION

It is well recognized that software architecture is crucial
when developing complex software [1]. A poorly conceived
and defined architecture might cause serious implementation
flaws, delays on the project, or product delivery extra cost.
Architecture knowledge is used in different phases of the
architecture lifecycle by a variety of stakeholders [2], to
conceive and evaluate the architecture, as well as to imple-
ment and maintain it. Architecture knowledge is commonly
manifested in architecture descriptions.

Previous research has identified the need to design an ar-
chitecture also in agile environments, and reconsider suitable
approaches to document it in fast-changing contexts [3], [4],
[5]. A critical issue is the balance of upfront architecture
(that is planned before the start of development) and emerg-
ing architecture (that appears as decisions are taken in the
course of the development). This balance is needed to take

key decisions early on and avoid architectural rework, but to
leave room to adapt and evolve the architecture over time [6].

In evolving software engineering contexts, a prevalent
issue is the assurance of conformance between architecture
and code [1], [7], [8]. Empirical studies have found that
the artifacts produced by architects are not used by the
intended consumers or at least not to the wished extent [9],
[10]. Inconsistencies between architecture descriptions, as
well as between architecture descriptions and the imple-
mentations can be problematic. A study on the loss of
architecture knowledge during system evolution found that
more than 70% of the non-conformances between architec-
ture description and source code are due to flaws in the
documentation [11]. An analysis of open research issues
on inconsistency management arrived at the conclusion that
more research is needed on how stakeholders and the general
development process influence inconsistencies [12]. A recent
study has found that while practitioners are reluctant to-
wards fixing architectural inconsistencies, they see potential
in mechanisms to increasing architectural awareness [13].
However, more case studies are needed in the area [13].

This paper contributes towards closing this gap by scru-
tinizing architectural inconsistencies in evolving software
engineering contexts and providing practical guidance to
make architecture descriptions more useful and consistent.
We conducted an initial survey with 93 respondents to
investigate inconsistencies between multiple architecture de-
scriptions, and between architecture descriptions and the
implementation. We derived practical guidelines to augment
the usefulness and consistency of architecture descriptions.
In a second survey with 72 participants, we validated the
previous findings and evaluated the guidelines’ usefulness.

We focused on the following research questions:
• RQ1: What are the types, reasons, and consequences

of architectural inconsistencies?
• RQ2: How do architecture descriptions and their rela-

tion to the implementation change over time?
• RQ3: What are guidelines to support practitioners with

the management of architecture descriptions?



Our findings suggest that architecture descriptions can be
useful both to reason about the future architecture and about
the current state. Inconsistencies related to wording and
language are perceived as less critical than other types of
inconsistencies (e.g., rules and constraints). They occur due
to several reasons, e.g., lack of time, lack of knowledge,
and communication issues, especially if an architecture
description concerns multiple teams. Consequences of in-
consistencies typically arise at later stages (e.g., deploy-
ment, runtime, or maintenance). The role of consistency,
the main users, and the role of architecture changes from
the initial creation to the design and development. Over
time, developers become more involved and consistency
becomes more relevant during the development and design.
Our participants see a value in describing both the current-
state and the future-state architecture. They aim to refine
the architecture during the implementation, but struggle with
finding a balance between upfront and emerging architecture.
To mitigate these issues, we propose to clarify the purpose of
a description and whether the description should refer to the
current- or future-state architecture. The upfront architecture
should be minimized, but especially elements concerning
more than one cross-functional team should be included
in architecture descriptions, as these descriptions may act
as “boundary objects” between teams. Architects should be
integrated into teams to capture emerging aspects, but also
have communities of practice to reason about change.
Paper outline: The paper is structured as follows. Section II
describes our study’s research method. Section III presents
an overview of the participants of the surveys. Sections IV
(RQ1) and V (RQ2) present the findings of the study. Sec-
tion VI presents the developed guidelines (RQ3). Section VII
presents related work, a comparison with our findings, and
relations to the guidelines we propose. We conclude the
paper in Section VIII with directions for future research.

II. RESEARCH METHOD

To fulfill our research goals, we conducted two surveys,
following Kitchenham and Pfleeger’s guidelines for survey
research [14]. Surveys are appropriate when the aim is
to provide statistical descriptions of an issue by asking
questions and analyzing mainly numerical answers [15].

We decided to include several iterations in the research
method: Validation focus groups to validate our study de-
sign, an initial survey to understand the consistency and
usefulness of architecture descriptions, and a second survey
focusing on concrete guidelines and findings derived from
the first step. Figure 1 depicts the steps of our research
method that we describe in the following.

A. Literature Review

In order to get a good understanding of related work
and see what research questions are of importance, we
searched the literature for studies in the area. We focused on

A. Literature 
review

B. Survey design 
and planning

C. Validation of 
survey design

D. Data 
collection

E. Data analysis
and reporting

Follow-up survey

Figure 1. Overview of our research method

architectural inconsistencies and architecture descriptions, as
well as general studies on architecture acknowledgment and
agile architecture.

B. Survey Design and Planning

We defined the selection criteria of our surveys as follows:
1) industrial practitioners knowledgeable in the areas of

software or systems architecture;
2) involved in the architectural process at their company

(creators, consumers, or other stakeholders of architec-
ture descriptions);

3) having a role in which they are in contact with archi-
tecture descriptions (e.g., developer, tester, architect).

We decided to use convenience sampling due to the lim-
ited availability of the target population. We used existing
contacts to identify participants fulfilling these criteria, e.g.,
based on research collaborations or by contacting partic-
ipating companies in the Software Center initiative1. We
also posted an announcement in the mailing list of the
ISO/IEC/IEEE 42010 architecture standard [16], and in the
“Software Architects and Enterprise Architects” and the “97
Things Every Software Architect Should Know” LinkedIn
groups. Moreover, we asked our participants to extend our
sample using snowball sampling and sent reminders to
participants to increase the response rate of our survey [14].

When composing the questionnaire, we linked included
questions to our main research questions for better traceabil-
ity. The questionnaires can be found online2. We included
demographic questions, as well as open- and closed-ended
questions. Open-ended questions were used to not im-
pose restrictions on the respondents by predefined answers.
Closed-ended questions included numerical values, response
categories, yes/no answers, and Likert scale questions [17].

C. Validation of the Survey Design

We conducted initial test runs of the first survey internally
and with three practitioners from different companies.

Moreover, for both surveys, we hosted validation focus
groups. For the first survey, we had four sessions with staff
from two automotive companies and one telecommunica-
tion company. For the second survey, we conducted four
validation focus groups together with two system architects

1http://www.software-center.se/
2https://tinyurl.com/ybk9gycm and https://tinyurl.com/y849zamk



working in an automotive company for more than 20 years,
and an architect from a telecommunications company with
7 years of experience. In the validation focus groups, we
walked through the questions in a PowerPoint presentation,
and asked for input, e.g., if the terminology was understand-
able. We recorded all given input and used it to inform the
developed guidelines that we validated in the second survey.

For both surveys, we updated the questions and conducted
final test runs together with the focus group participants.

D. Data Collection

We used online surveys for the data collection, based on
the platform SoSci Survey3. The length of the first survey
was approximately 20 minutes, and about 10 minutes for the
second survey. We filtered out the responses of participants
who only clicked through the survey without answering at
least 20%. In total, we had 93 complete answers for the first
survey. For the second survey, we got 72 replies in total.

E. Data Analysis and Reporting

For closed-ended questions, we analyzed the number of
given responses to draw conclusions. For answers given in
text, we coded the text of the responses by categorizing
replies or parts of replies.

With the coding and statistical summary of the questions,
we collected key findings in two documents: One with the
results of each question (vertical analysis), and one across
questions (horizontal analysis). For instance, we checked
whether architects would have different response pattern
than respondents with other roles. Findings and hypothesis
were revised, tested, and discussed in a number of white-
board workshops among the authors.

Based on the first survey, we derived guidelines and ques-
tions for the second survey. We took identified challenges
and insights as a basis and derived guidelines as a way to
improve the situation. Together with the participants of the
validation focus groups, we discussed the guidelines. We
also systematically noted down our insights and discussions,
created appropriate graphs and diagrams to visualize the
data, and report on our findings in this paper.

F. Research Validity And Limitations

We discuss four types of survey validity [18].
Internal validity is concerned with the relationship be-

tween a treatment and its results and whether any unknown
factors influenced the outcome of the study. To improve
the instrument used in the study, we conducted validation
focus groups before the surveys, also discussing factors not
captured in the surveys. We asked our participants to respond
on a voluntary basis and ensured confidentiality to encourage
respondents to answer in a truthful way.

Conclusion validity relates to the certainty that correct
conclusions can be drawn about the relation between the

3https://www.soscisurvey.de/

measures and the observed outcome. To mitigate threats to
conclusion validity, we included researchers and practition-
ers with different backgrounds in the design of the study.
Moreover, we constructed the second survey in a way that we
asked general questions in the beginning before presenting
our guidelines and potentially biasing the participants. In
this paper, we are transparent about our methodology. We
systematically analyzed the data by coding free text answers
and analyzing questions both individually and in relation to
other questions. Moreover, we validated the conclusions with
industrial and academic participants.

Construct validity is about how a theory behind an in-
vestigation relates to the observations made. In the area
of architecture descriptions and inconsistencies, there is
no established theory. There exists a potential threat that
respondents answer what they think we expect them to
answer and/or want to present themselves in a favorable light
(evaluation apprehension). Creating anonymous surveys and
assuring that we treat the data confidentially helped to
mitigate this bias.

External validity is about the limitations of this study
to generalize conclusions to other companies and cases.
We aimed to find a representative sample based on dif-
ferent sources, both within our networks and via LinkedIn
groups and mailing lists. In the first survey, the respondents
came from 27 companies. Still, some companies were more
strongly represented than others. Other potential biases are
a high proportion of architects and individuals having a
positive attitude towards architecture topics. We highlight
when the architects’ replies stood out compared to the
responses from other roles. 51% of the respondents in the
first survey were architects, and 61% in the second survey.
However, 60% of the architects in the second survey also had
another role. For this reason, they have a broader perspective
on the topic. Our experienced respondents also answered
based on experience from previous roles.

III. OVERVIEW OF SURVEY PARTICIPANTS

This section presents the survey participants’ origin and
context for the initial and the second survey.

A large majority (76% in the first, 64% in the second
survey) of the participants work in companies with more
than 2000 employees. The dominating domain was automo-
tive with 41% in the first and 33% in the second survey.
Telecommunication was selected by 26% in the first survey,
and 9.3% in the second survey. The rest of the companies
covered domains such as banking, business systems, health
care, defense, and aerospace.

In the first survey, we also for the respondents’ companies.
In total, 27 companies in 12 countries were named.

Our participants cover different roles, and we let the
participants choose more than one role. The most popular
role among our participants was “architect” (51% in the
first, 61% in the second survey). Software designer and



system engineer were selected by 26% in the first and
16% in the second survey. Other roles were function owner,
Scrum master, CTO, system/product owner, project manager,
implementer, and tester.

A majority of our participants were experienced, with
27% having more than 21 years of experience in the first,
and 39% in the second survey. In the first survey, 43% had
11-20 years of experience, and 38% in the second survey.

In the second survey, we asked the participants what
development methods they used. 87.5% of the participants
indicated that they use agile methods, and 9% indicated in
the comments that they are in the transition to agile methods.

IV. ARCHITECTURAL INCONSISTENCIES IN PRACTICE

This section gives answers to RQ1: What are the types,
reasons, and consequences of architectural inconsistencies?
85% of our respondents of the first survey reported that
they were aware of inconsistencies between the architecture
description and the implementation, and 82% were aware of
inconsistencies between multiple architecture descriptions.

A. Types of Inconsistencies

The survey participants of the first survey were asked to
give examples of inconsistencies in plain text. Based on the
coded data, we identified four main types of inconsistencies:

1) Interface specifications and implementation: Interfaces
are implemented differently from their specification. A
developer mentioned that inconsistencies often emerge
due to “interfaces between components developed in
separate organizations.” The organizational and col-
laborative consequences of developing a product in a
distributed manner strongly influence the architecture
and the likelihood to have inconsistencies.

2) Rules and constraints: These conditions are set by the
architecture, but broken in the implementation.

3) Patterns and guidelines: These should be followed, but
are less strictly enforced than rules and constraints.

4) Wording and language: Inconsistencies in wording and
language are quite common, but the negative impact of
this type of inconsistencies is considered rather low.

In the initial survey, the first three types of inconsistencies
were perceived to have a highly negative impact. Inconsis-
tencies on wording and language were not seen as very criti-
cal. An architect working at an automotive company stressed
that as long as traceability is supported, inconsistencies in
wording are not that critical. For instance, there are naming
conventions for components at the architectural level which
are not followed in the implementation.

B. Reasons for Inconsistencies

We asked our respondents to state why they think incon-
sistencies occur. 54% of the respondents of the first survey
stated that a reason for inconsistencies is a lack of time,
and 26% stated that inconsistencies exist due to a lack of

resources. These causes are also related to the priorities of
investing in (the quality of) architecture descriptions and
consuming the created documentation. The reason “lack
of interest” in architecture was reported by 30% of the
participants of the first survey. An architect stated that
he did “not think developers consider reading architecture
descriptions at all, instead they invent own local patterns
which are not documented at all.”

54% of the respondents of the first survey stated that
inconsistencies are caused by a lack of knowledge—mainly
knowledge of underlying rules and principles of the archi-
tecture. Related concerns are issues on assumptions, chosen
by 40% of the respondents of the first survey, lack of com-
munication (46%), and lack of a common language (40%).
In fact, we found that lack of communication across team
boundaries is especially critical: 75% of the respondents
of the second survey agreed or strongly agreed with the
statement that “inconsistencies are more likely to arise when
a change concerns multiple teams.”

C. Consequences of Inconsistencies

In the first survey, we got 48 free-text examples of
consequences and categorized them into development issues,
run-time issues, deployment issues, and maintenance issues.
Development issues mostly relate to workarounds and re-
work motivated by the need to remove inconsistencies. Run-
time issues are deadlocks, illegal behavior in the interaction
between components, or other defects. Deployment issues
relate to complications for staff deploying the system to
understand how the product works and how to deploy it.
Maintenance issues are connected to the difficulty of finding
bugs in the system, or unforeseen dependencies between
components that result in the need for architecture rework.

V. TIME PERSPECTIVES OF ARCHITECTURE
DESCRIPTIONS

This section answers RQ2: How do architecture descrip-
tions and their relation to the implementation change over
time?

We found that our participants had different perceptions
of the purpose and time perspectives of architecture de-
scriptions (i.e., whether it should describe the as-is or to-be
architecture) and how these aspects change over time.

A. Development of Architecture Descriptions over Time

We analyzed how the audience of architecture descriptions
and the role of consistency change over time.

81% of the respondents of our second survey stated that
the role and purpose of architecture change over time. 57%
stated that the importance of consistency increases over time
and 36% reported that it decreases over time.

There are differences between the creation phase of the
architecture and the phase in which the implementation
of the software or system starts. 69% of the respondents



Table I
AUDIENCE, ROLE OF CONSISTENCY AND OF EMERGING ELEMENTS

OVER TIME (NUMBERS IN PERCENT, SECOND SURVEY)

During initial
creation of the
architecture

During
development
and design

Architects are the main users 56% 28%

Developers are the main users 22% 54%

Inconsistencies are not a big issue 38% 14%

Need stability/correctness/
consistency among arch. descr.’s

61% 86%

Emerging elements should be
planned for and captured

86% 90%

stated that they observed that “there is an initial description
of the architecture which is refined when the product is
designed and developed.” Table I shows how the audience,
role of consistency, and importance of emerging elements
were perceived to change over time, based on the second
survey. We found that architecture descriptions are slightly
more commonly used by architects in the initial stage: 56%
of the survey respondents saw architects as the main users of
architecture descriptions in the beginning, while 22% con-
sidered developers the main users. 86% of the respondents
stated that in the beginning, one needs to plan for emerging
elements. An architect working at an automotive company
stated that with time, the goal is to further increase the
collaboration between architects, developers, and other ar-
chitecture stakeholders. The intention is to align architecture
and implementation. 54% of the participants of the second
survey reported that during the design and development, the
architecture is mainly used by developers, and 28% saw
architects as main stakeholders. While both roles seem to
be involved from the initial creation to the development and
design, the trend is that developers become more involved
over time. In the comments, several respondents mentioned
that other stakeholder groups should not be forgotten.

38% of the respondents of the second survey stated that
during the initial creation of the architecture, inconsistencies
are not a big issue, while 14% of the respondents stated that
inconsistencies are not a big issue during the development
and design. In the later phases, consistency appears to
play a more important role. 86% of the respondents of
the second survey stated that during the development and
design, an architecture description should be consistent with
other architecture descriptions, and 88% that the architecture
description should be consistent with the implementation.

Based on the presented information, we understood that
roles and the importance of consistency change over time.
Developers become more central users during the develop-
ment and design and the importance of consistency increases
after the initial creation of the architecture.

Table II
WHAT POINT IN TIME DOES/SHOULD THE ARCHITECTURE DESCRIBE?

(NUMBERS IN PERCENT, FIRST SURVEY)

What does the
architecture description
currently describe?

What should the
architecture
description describe?

To be developed 47% 63%
Current state 46% 46%
Other 13% 11%

B. Time Perspective of Architecture Descriptions

To understand how the relation of architecture descrip-
tions and the implementation changes over time, we were
interested in understanding what state of the system the
architecture description currently describes and should de-
scribe. Table II shows the answers of the respondents of the
first survey related to these questions. There is a balance
between the future and the current perspectives: 47% of the
respondents indicated that it is concerned with the system
to be developed, while the current state was picked by
46%. 63% of the participants reported that an architecture
description should describe what should be developed in the
future, while 46% selected that it should be the current state.

On one hand, respondents see that the architecture should
reflect the system at the current point in time for various
purposes. In the first survey, 69% named that an architec-
ture description should communicate architecture decisions
and also 69% stated that it should define components and
connectors. On the other hand, practitioners considered that
architecture descriptions should be a blueprint for future
development (48%, first survey) or to analyze the impact
of changes (43%, first survey).

In the second survey, 88% of the respondents stated that
a description of the future architecture is needed, and 79%
stated that they need a description of the current architecture
during the development and design.

Several participants of our study also commented that
an architecture description is used for long-term knowl-
edge management, e.g., of a series of products. A re-
quirements engineer, architect, and system engineer from a
telecommunications company stressed that an architecture
description should “capture the thoughts, ideas, patterns,
and assumptions that went into the architecture, so that
future development can follow the same ideas and patterns.”

To conclude, we saw that architecture descriptions are and
can be used to describe the current-state system or software,
as well as the future-state system or software. For both time
perspectives, there are purposes and respondents stating that
the perspectives are valuable. We used this understanding
during the development of the guidelines (Section VI).

C. Interplay Between Architecture and Implementation

We aimed to understand whether the architecture descrip-
tion is designed first or whether it follows the design and



implementation. In the first survey, 60% of the participants
stated that the architecture is designed upfront and 49% indi-
cated that the architecture emerges from the implementation.

We noticed a difference between roles. In the first survey,
81% of the architects indicated that the design and imple-
mentation follow the architecture rules and principles. Of
the respondents with no architecture role, 54% agreed with
the statement that the design and implementation follow the
architecture rules and principles.

In the second survey, 90% stated that during the design
and development, emerging elements of the architecture ap-
pear and should be captured in the architecture description.
79% of the participants of the second survey agreed or
strongly agreed with the statement that “an initial archi-
tecture created by the architects should be the starting point
for the implementation.”

To conclude, our participants saw that the architecture
should be refined based on aspects that appear during the
design and development. An initial architecture description
is typically used as a starting point for implementation.
In the second survey, 76% agreed or strongly agreed with
the statement that they “struggle with finding a balance
between upfront architecture and architecture emerging from
the development.”

VI. GUIDELINES FOR PRACTITIONERS

This section answers RQ3: What are guidelines to support
practitioners with the management of architecture descrip-
tions? An overview of our guidelines and our participants’
ranking of their value is shown in Figure 2. In the following,
we present the rationales behind the guidelines and insights
from the second survey.
First guideline: Our findings indicate that architectural
inconsistencies are indeed commonly observed by practi-
tioners. Inconsistencies with a less severe negative impact
are typically related to wording and language. A majority
of respondents reported a lack of time and interest as
reasons for inconsistencies. A lack of time and resources
indicates that the task of counteracting inconsistencies is
not seen as a top priority issue. To improve the quality
and usefulness, our participants suggested to include only
“important” aspects and tailor the descriptions more towards
the intended customers. 60% of the respondents of the
second survey agreed or strongly agreed that “it is not always
apparent who the consumers of an architecture description
are.” When aiming to create an architecture description that
is used by practitioners, it needs to be clearly specified who
the consumers are and what the purpose is [9]. We capture
this aspect in the first guideline:
(G1) To define the content of an architecture description,

clearly state the purpose and the intended audience.
This information can help you to define the level of
abstraction and what elements should be included and
excluded in the description.

84% of the respondents of the second survey considered
this guideline very or extremely valuable. A respondent con-
sidering the guideline “not at all valuable” stated: “Whatever
the intended audience was when the document was written
is probably different from the real audience later on.”
We acknowledge the need to reassess the audience later
and consider it not only in the beginning, but in frequent
intervals. An architect working in the health care sector
agreed with the guideline and stated that “this is definitely
true, but it is a challenge.” One respondent stressed that the
guideline is also included the ISO standard 42010 [16].
Second guideline: Some participants stated that an archi-
tecture description should reflect the current state of the
system, but also future concerns are of interest (e.g., when
understanding the impact of changes). In fact, we found
quite an equilibrium between the two time perspectives—
both with respect to what architecture descriptions currently
describe and what they should describe. Both are relevant for
practical purposes and have their justifications. However, in
order to mitigate inconsistencies, these two concerns should
be clearly separated. This brings us to our second guideline:
(G2) There should be a clear distinction between the archi-

tecture of the system as it is now and as it is planned
for the future. The two time perspectives should not be
mixed.

In our second survey, 72% of our respondents ranked
this guideline as extremely or very valuable. We received
comments stating that both dimensions can be part of the
same document, but still separated. Other respondents stated
that they partly mix the perspectives and describe the current
architecture in more detail than the future architecture. Two
respondents stated that a timeline including the transition
from the current to the future state can be beneficial, since
“the transition architecture is sometimes critical.”
Third guideline: The views of whether an architecture
description should be an upfront specification or emerge
from the implementation differed a lot between respondents.
If there is no upfront architecture, ad-hoc decisions are likely
to be taken due to a lack of knowledge and communi-
cation, which leads to undesirable rework in later phases.
Our findings suggest that if there exists too much upfront
documentation, developers potentially ignore it and do not
regard it as useful. 90% of the respondents of the second
survey stated that emerging elements of the architecture
should be captured during development and design.

We found that inconsistencies between the interface spec-
ifications and the implementation were the most common
type of inconsistencies, and commonly arise when interfaces
connect components developed by different organizational
units. For architecture elements used across teams, it is
especially crucial to have a reliable, useful architecture
description. 75% of the respondents of the second survey
stated that inconsistencies are more likely to arise when
a change concerns multiple teams. This leads us to the



3

5

5

2

5

6

3

8

2

2

13

17

16

17

8

19

50

41

47

53

41

22

34

31

30

20

45

58

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

G1: State purpose and audience to define the level of abstraction
and inclusion criteria.

G2: Distinguish between present and future perspectives.

G3: Minimize the number of elements in the upfront architecture.
Include elements relevant across team boundaries.

G4: Assess decisions in the description of the future architecture in
communities of practice.

G5: Integrate architects into the teams to understand emerging
aspects.

G6: Use one source of information and make it traceable.

not at all valuable of little value moderately valuable very valuable extremely valuable

Figure 2. Ranking of our guidelines’ value in percent

definition of the third guideline:
(G3) Minimize the number of elements in the upfront archi-

tecture description as much as possible and ensure it is
in line with its purpose. Make sure that you include key
elements that concern more than one cross-functional
team.

77% of the participants of the second survey ranked this
guideline very or extremely valuable. Some critical com-
ments related to the term ‘minimize.’ Three respondents
stressed that a “minimum viable architecture description”
with “architecturally significant elements” is needed. An ar-
chitect from an automotive company stated that it might not
be relevant to arrive at a low number of elements in the archi-
tecture description, but stressed the importance of including
elements of “high impact on multiple teams.” Moreover,
this guideline was considered “essential to achieve agile
architecture” and “very good guidance.”
Fourth guideline: In the initial survey, 80% of the partici-
pants indicated that documenting assumptions could help to
improve architecture descriptions. We found that many of
the consequences of inconsistencies are observed in later
phases of the system’s lifecycle, in which architectural
rework requires more effort. Therefore, decisions included
in the architecture description should be evaluated carefully.
The participants of our validation focus groups suggested
experiments and prototyping for this purpose.

Communities of practice can be suitable forums to analyze
and discuss architecture decisions in groups of experts. An
architect from a telecommunications company underlined
that discussions in these communities should lead to action-
able decisions.

This leads us to the definition of the fourth guideline.
(G4) If you create a description of the future architecture,

carefully assess decisions before setting them into stone
to reduce assumptions that can become inconsistencies.
Establish a community of practice for architects to
reason about change.

This guideline was ranked very or extremely valuable by

73% of the participants. Several respondents argued that
decisions should not be “set into stone.” Instead, an architect
from a telecommunications company argues that decisions
can be on multiple confidence levels and should be more or
less binding. Another respondent stated that decisions that
are expensive to change “are worth thinking carefully about
early on.” The term ‘community of practice’ seems to have
certain connotations in some of the respondents’ companies.
Two respondents stated that they prefer the terms ‘forum’ or
‘community of impacted users.’
Fifth guideline: Architects are typical users of architecture
descriptions. However, to counteract the antipattern of the
ivory tower [19] also other roles should get involved. 54% of
the respondents of the second survey stated that developers
should be the main users of architecture descriptions during
the design and development. It is important to iteratively
improve architecture descriptions and capture emerging as-
pects, as also confirmed by our second survey. The top
mentioned suggestion in the first survey was to leverage
feedback from developers to keep the descriptions up to date.

This leads us to the definition of the fifth guideline:
(G5) Integrate architects into cross-functional teams to col-

lect feedback from developers to identify inconsistencies
and capture emerging aspects of the architecture as the
system evolves.

86% of the participants ranked this guideline as very or
extremely valuable. An architect from an insurance company
saw little value in the guideline and stated that “if architec-
ture just arises then there isn’t a planned architecture.” It
should be noted that both emerging and upfront architecture
are needed, which is why G3 is concerned with upfront
architecture planned in advance. Many participants stressed
the importance of G5 and reported that architects should be
involved in daily development. Two respondents commented
that feedback should not only be collected from developers,
but also “users, managers, contractors, hardware support,
and financial analysts.”
Sixth guideline: Today, a variety of tools is used to create



and manage architecture descriptions. An architect from
a telecommunications company suggested to version them
together with the source code to enable a more natural
connection between architecture and implementation. An
automotive architect explained that it can be beneficial
to use a common systems engineering tool for the high-
level architecture, but also for the design on a lower level.
Accessibility and traceability are important properties to
ensure that an architecture description is used.
(G6) To avoid inconsistencies, use one accessible source of

information. Make the architecture description trace-
able for others to keep it up to date.

This guideline was ranked extremely valuable by 58% of
our respondents and very valuable by 22%. Many of the
comments related to the challenging nature of implementing
this guideline, the need for better modeling tools, versioning
mechanisms, and lightweight support for traceability.

VII. RELATED WORK AND RELATION WITH GUIDELINES

Agile processes and software architecture can be success-
fully combined and be mutually supportive [4]. A challenge
when creating architecture descriptions in agile contexts
is the balance of up-front and emerging architecture [20]:
Practitioners should try to avoid making decisions too
early [20], but need to make some decisions early on to
avoid architectural rework later.

In this paper, one of our main focuses lied on the relation
between architecture descriptions and the implementation.
In the architecture life cycle, we focus on the stage of ar-
chitectural implementation [21] and developers as the main
consumers of information. We can confirm the observation
that the issue of aligning architecture and implementation is
a prevalent concern, also in agile methods [5], [3].

Architectural inconsistencies can result in architectural
debt [22]. If inconsistencies are not counteracted but remain
as wrong assumptions in the architecture descriptions, tech-
nical debt emerges. In fact, the importance of consistency
has been proclaimed since the beginnings of the field of
software architecture [23]. As the architecture evolves over
time, inconsistencies are likely to arise, which requires
architects to also consider the perspective of time [24].
Our suggested guidelines can help to prevent architecture
decay [25] and architecture erosion [23], [26], as they
work towards a better alignment of architecture descriptions
and implementation. Architectural drift emerges as a result
of an obscure architecture that stakeholders have become
insensitive to [23]. Better understanding the architecture
description’s purpose, its relation to the implementation, and
connecting architects and developers can help mitigating
these problems.

Our guidelines have a connection to related work in mul-
tiple ways. An overview is shown in Table III. Guideline G1
(“state purpose and audience”) is the basis to all subsequent
guidelines and stages, but nevertheless often neglected in

Table III
GUIDELINES FOR ARCHITECTURE DESCRIPTIONS AND THE DISCUSSED

RELATED WORK

Guideline Description References

G1 State purpose and audience to define the level of
abstraction and inclusion criteria.

[27], [28]

G2 Distinguish between present and future perspectives. [29], [30]
G3 Minimize the number of elements in the upfront ar-

chitecture. Include elements that are relevant across
team boundaries.

[20], [31],
[32]

G4 Assess decisions in the description of the future
architecture in communities of practice.

[20], [33],
[24]

G5 Integrate architects into the teams to understand
emerging aspects.

[34], [35],
[36]

G6 Use one source of information and make it traceable. [27], [37]

practice. We found that in our participating companies, but
also in related empirical studies (e.g., [27], [28]), architec-
ture descriptions were used for very different purposes, e.g.,
communication with developers, or more formal analysis
of planned changes. Our findings indicate that practitioners
are not always aware of the purpose of their architecture
descriptions. Still, the purpose is crucial to decide on what
elements should be part of the architecture.

G2 is concerned with the distinction between current-
and future-state architecture, which is used for enterprise
architecture [29]. Related work advised to create a read-only
description of the current state and future-state models for
project teams developing the design of the future architec-
ture [30]. We found that in some companies, a future-state
architecture description is not required at all. It depends on
the position in the system’s life-cycle, the size and structure
of the organization, and the number of planned changes.

Guideline G3 (“minimize the number of elements, but
focus on elements across team boundaries”) relates to Wa-
terman’s advice to design only for the immediate future and
to delay decision making [20]. We recommend to include
elements that concern more than one cross-functional team,
which also connects to the relation of software architecture
and social debt [31]. Architectural decisions that concern
more than one team require good architecture communicabil-
ity, which is why they should be transparently documented in
an architecture description [31]. In a previous study [32], we
found that architecture models and descriptions are examples
of “boundary objects” between multiple cross-functional
teams, which are used to create a common understanding
across sites while preserving each team’s identity.

G4 (“assess decisions, validate architectural decisions in
communities of practice”) relates to connecting architec-
ture experts in communities of practice to reason about
change [33]. Related work suggested to create an architec-
ture road-map and plan for the system’s evolution [24], and
to prove the architecture with code iteratively [20]. However,
in practice, besides implementing decisions in the actual
system, our findings indicate that it can be beneficial to use



other means of analysis to validate the feasibility of planned
changes (e.g., simulations).

G5 (“integrate architects into teams to capture emerging
aspects”) is in line with the recommendation to connect
architects more closely with the development teams and cap-
ture emerging aspects on-demand [34]. It has been suggested
to make architects responsible for promoting decisions and
communicating knowledge to the teams [35]. Agile teams
that did not have an architect had deteriorated code qual-
ity [36]. Due to resource constraints, it is not always possible
to integrate an architect into every cross-functional team, as
stated by an architect from a telecommunications company.

Guideline G6 (“use one source of information”) is con-
cerned with having a traceable and common way of storing
architecture descriptions. Related work has used a white-
board to create and document the architecture in a col-
laborative manner [27], which might not be scalable for
large-scale development contexts. Tool support can also
help to ensure consistency between architecture descriptions
and the implementation. A systems architect working at an
automotive company recommended to use a systems engi-
neering tool across teams and ensure that teams can trace
their artifacts to the architecture description. Supporting G6
and improving traceability can also support collaboration
between (distributed) stakeholders [37].

VIII. CONCLUSIONS AND FUTURE RESEARCH

In this paper, we presented two industrial surveys with
93 and 72 practitioners examining inconsistencies related
to architecture descriptions, their development over time,
and guidelines to improve the consistency and usefulness
of architecture descriptions. Our findings indicate that the
alignment of architecture and implementation is still a
prevalent issue in practice. While inconsistencies related to
wording and language are not seen as very critical, practi-
tioners observe severe consequences of inconsistencies with
interface specifications, rules and constraints, and patterns
and guidelines. These consequences typically arise at later
stages of the development lifecycle. Most commonly, incon-
sistencies arise due to a lack of time, knowledge, or commu-
nication. Especially across team borders, inconsistencies are
likely to arise. The importance of consistency increases after
the initial creation of the architecture. Developers become
more involved in this stage. Our respondents see a value in
describing both the current-state architecture and the future-
state architecture. Moreover, we found that one aims to
refine the architecture during the design and development.
However, finding a balance between upfront and emerging
architecture is challenging.

Based on these insights, we developed and successfully
evaluated guidelines to create and maintain consistent and
useful architecture descriptions. We suggest to clearly state
the purpose and intended audience of an architecture descrip-
tion and separate the current- and future-state architecture.

The upfront architecture description should be kept small,
but include elements that are relevant across team borders.
For the future architecture, decisions should be assessed and
reasoned about in communities of practice for architects.
Moreover, we recommend to integrate architects into cross-
functional teams and capture emerging aspects of the archi-
tecture. Finally, we suggest to use one accessible source of
information and make the architecture description traceable.

Practitioners can benefit from the presented findings and
guidelines by understanding how inconsistencies develop
over time and applying our guidelines to their contexts. Re-
searchers can benefit from empirical evidence of the state of
the practice of architecture descriptions and inconsistencies.
The presented research can serve as the motivation for future
studies, e.g., to apply and validate our guidelines in industrial
case studies. Several of our guidelines can be supported by
more concrete practices and approaches.

Methods and techniques to analyze and capture emerging
aspects in architecture descriptions could be of value to
practitioners, especially with a focus on supporting non-
architect stakeholders to leverage and modify architecture
descriptions. It is also interesting to explore how current-
state and future-state architectures can be developed in par-
allel, including the mentioned timeline to transition between
them. The concept of boundary objects requires further
investigation, to identify what information should be in-
and excluded in the architecture description. Our findings
indicate that tool support, the lack of suitable modeling tools
for architecture descriptions, and the need for lightweight
traceability are challenging areas and warrant research.

ACKNOWLEDGMENTS

We would like to thank all participants for their kind
support. Moreover, the work acknowledges support by the
Vinnova projects ASSUME, NGEA and NGEA step 2,
the Software Center (software-center.se), and the Wallenberg
AI, Autonomous Systems and Software Program (WASP)
funded by the Knut and Alice Wallenberg Foundation.

REFERENCES

[1] M. Shaw and P. Clements, “The golden age of software
architecture,” IEEE Software, vol. 23, no. 2, pp. 31–39, March
2006.

[2] M. A. Babar, Supporting the Software Architecture Process
with Knowledge Management. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2009, pp. 69–86.

[3] P. Abrahamsson, M. A. Babar, and P. Kruchten, “Agility and
architecture: Can they coexist?” IEEE Software, vol. 27, no. 2,
pp. 16–22, March 2010.

[4] G. Booch, “An architectural oxymoron,” IEEE Software,
vol. 27, no. 5, pp. 96–96, Sep. 2010.

[5] M. A. Babar, “An exploratory study of architectural prac-
tices and challenges in using agile software development
approaches,” in WICSA 2009, 2009, pp. 81–90.



[6] M. Waterman, J. Noble, and G. Allan, “How much up-front?
a grounded theory of agile architecture,” in ICSE’15, 2015,
pp. 347–357.

[7] H. P. Breivold, I. Crnkovic, and M. Larsson, “A systematic re-
view of software architecture evolution research,” Information
and Software Technology, vol. 54, no. 1, pp. 16–40, 2012.

[8] T. Mens and S. Demeyer, Eds., Software Evolution. Springer-
Verlag Berlin Heidelberg, 2008, vol. 1.

[9] R. Heldal, P. Pelliccione, U. Eliasson, J. Lantz, J. Derehag,
and J. Whittle, “Descriptive vs prescriptive models in indus-
try,” in MODELS 2016, 2016, pp. 216–226.

[10] U. Eliasson, R. Heldal, P. Pelliccione, and J. Lantz, “Archi-
tecting in the automotive domain: Descriptive vs prescriptive
architecture,” in WICSA 2015, 2015, pp. 115–118.

[11] M. Feilkas, D. Ratiu, and E. Jürgens, “The loss of architec-
tural knowledge during system evolution: An industrial case
study,” in ICPC 2009, vol. 00, May 2009, pp. 188–197.

[12] G. Spanoudakis and A. Zisman, “Inconsistency management
in software engineering: Survey and open research issues,”
Handbook of Software Engineering and Knowledge Engineer-
ing, vol. 1, pp. 329–380, 2001.

[13] N. Ali, S. Baker, R. O’Crowley, S. Herold, and J. Buckley,
“Architecture consistency: State of the practice, challenges
and requirements,” Empirical Software Engineering, vol. 23,
no. 1, pp. 224–258, feb 2018.

[14] B. A. Kitchenham and S. L. Pfleeger, Personal Opinion
Surveys. London: Springer London, 2008, pp. 63–92.

[15] F. J. Fowler, Jr., Survey Research Methods, 3rd ed., ser.
Applied Social Research Methods. Thousand Oaks, CA:
SAGE Publications, 2002.

[16] ISO/IEC/IEEE 42010, Systems and software engineering —
Architecture description, ISO/IEC/IEEE, December 2011.

[17] R. Likert, “A technique for the measurement of attitudes,”
Archives of Psychology, vol. 22, no. 140, pp. 5–55, 1932.

[18] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell,
and A. Wesslén, Experimentation in software engineering.
Springer, Berlin, Heidelberg, 2012, vol. 9783642290.

[19] P. Kruchten, “What do software architects really do?” Journal
of Systems and Software, vol. 81, no. 12, pp. 2413–2416,
2008.

[20] M. Waterman, “Agility, risk, and uncertainty, part 1: Design-
ing an agile architecture,” IEEE Software, vol. 35, no. 2, pp.
99–101, March 2018.

[21] A. Tang, P. Avgeriou, A. Jansen, R. Capilla, and M. A. Babar,
“A comparative study of architecture knowledge management
tools,” Journal of Systems and Software, vol. 83, no. 3, pp.
352–370, 2010.

[22] P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical debt: From
metaphor to theory and practice,” IEEE Software, vol. 29,
no. 6, pp. 18–21, 2012.

[23] D. E. Perry and A. L. Wolf, “Foundations for the study of
software architecture,” ACM SIGSOFT Software Engineering
Notes, vol. 17, no. 4, pp. 40–52, oct 1992.

[24] E. Poort, “Just enough anticipation: Architect your time
dimension,” IEEE Software, vol. 33, no. 6, pp. 11–15, Nov
2016.

[25] M. Riaz, M. Sulayman, and H. Naqvi, “Architectural decay
during continuous software evolution and impact of ‘design
for change’ on software architecture,” in ASEA 2009, 2009.

[26] L. De Silva and D. Balasubramaniam, “Controlling software
architecture erosion: A survey,” Journal of Systems and Soft-
ware, vol. 85, no. 1, pp. 132–151, 2012.

[27] B. Weitzel, D. Rost, and M. Scheffe, “Sustaining agility
through architecture: Experiences from a joint research and
development laboratory,” in WICSA 2014, 2014, pp. 53–56.

[28] I. Malavolta, P. Lago, H. Muccini, P. Pelliccione, and A. Tang,
“What industry needs from architectural languages: A sur-
vey,” IEEE Transactions on Software Engineering, vol. 39,
no. 6, pp. 869–891, June 2013.

[29] X. Wang, X. Zhou, and L. Jiang, “A method of business and
IT alignment based on enterprise architecture,” in SOLI 2008.
IEEE, 2008, pp. 740–745.

[30] M. Lankhorst, “6 ways to organize your architecture models
(part 1),” BiZZdesign Blog, 2018, accessed on February 5,
2019.

[31] D. A. Tamburri and E. D. Nitto, “When software architecture
leads to social debt,” WICSA 2015, no. September 2005, pp.
61–64, 2015.

[32] R. Wohlrab, P. Pelliccione, E. Knauss, and M. Larsson,
“Boundary objects in agile practices: Continuous management
of systems engineering artifacts in the automotive domain,”
in ICSSP 2018. ACM, 2018, pp. 31–40.

[33] T. Kähkönen, “Agile methods for large organizations - build-
ing communities of practice,” in Proceedings of the Agile
Development Conference. IEEE, 2004, pp. 2–10.

[34] R. Weinreich and I. Groher, “The architect’s role in practice:
From decision maker to knowledge manager?” IEEE Soft-
ware, vol. 33, no. 6, pp. 63–69, Nov 2016.

[35] R. Britto, D. Smite, and L. Damm, “Software architects in
large-scale distributed projects: An ericsson case study,” IEEE
Software, vol. 33, no. 6, pp. 48–55, Nov 2016.

[36] S. Frey, L. Charissis, and J. Nahm, “How software architects
drive connected vehicles,” IEEE Software, vol. 33, no. 6, pp.
41–47, Nov 2016.

[37] R. Wohlrab, E. Knauss, J.-P. Steghöfer, S. Maro, A. Anjorin,
and P. Pelliccione, “Collaborative traceability management:
a multiple case study from the perspectives of organization,
process, and culture,” Requirements Engineering, Nov 2018.


