
Run-Time Adaptation ofQuality Attributes
for Automated Planning

Rebekka Wohlrab, Rômulo Meira-Góes
wohlrab@cmu.edu,romulo@cmu.edu

Institute for Software Research
Carnegie Mellon University

Pittsburgh, USA

Michael Vierhauser
michael.vierhauser@jku.at

LIT Secure and Correct Systems Lab
Johannes Kepler University Linz

Linz, Austria

ABSTRACT

Accepted to the 17th Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS’22)
The final published version is available at: https://doi.org/10.1145/3524844.3528063

Self-adaptive systems typically operate in heterogeneous environ-
ments and need to optimize their behavior based on a variety of
quality attributes to meet stakeholders’ needs. During adaptation
planning, these quality attributes are considered in the form of con-
straints, describing requirements that must be fulfilled, and utility
functions, which are used to select an optimal plan among several
alternatives. Up until now, most automated planning approaches are
not designed to adapt quality attributes, their priorities, and their
trade-offs at run time. Instead, both utility functions and constraints
are commonly defined at design time. There exists a clear lack of
run-time mechanisms that support their adaptation in response
to changes in the environment or in stakeholders’ preferences. In
this paper, we present initial work that combines automated plan-
ning and adaptation of quality attributes to address this gap. The
approach helps to semi-automatically adjust utility functions and
constraints based on changes at run time. We present a prelimi-
nary experimental evaluation that indicates that our approach can
provide plans with higher utility values while fulfilling changed
or added constraints. We conclude this paper with our envisioned
research outlook and plans for future empirical studies.

CCS CONCEPTS
•Computer systems organization→ Robotic autonomy; •Hard-
ware→ Safety critical systems; • Theory of computation→ Ver-
ification by model checking.

KEYWORDS
quality attributes, automated planning, non-functional require-
ments, self-adaptation, conflict resolution, constraints

ACM Reference Format:
Rebekka Wohlrab, Rômulo Meira-Góes and Michael Vierhauser. 2022. Run-
Time Adaptation of Quality Attributes for Automated Planning. In 17th
International Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS ’22), May 18–23, 2022, PITTSBURGH, PA, USA.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3524844.3528063

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SEAMS ’22, May 18–23, 2022, PITTSBURGH, PA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9305-8/22/05.
https://doi.org/10.1145/3524844.3528063

1 INTRODUCTION
Real-world, self-adaptive systems commonly operate in heteroge-
neous run-time environments. Depending on the context and the
task of a self-adaptive system, a variety of quality attributes need
to be taken into account that are typically specified by diverse
stakeholders [46]. For instance, client-server applications need to
consider performance, cost, and reliability concerns [44] to ful-
fill the requirements of end users and business owners. To plan
how the behavior or structure of a self-adaptive system should be
adapted in response to changes in the environment, automated
planning approaches have been introduced [20, 31] that take these
quality attributes into consideration. Automated planning has been
successfully applied, for instance, to robotic systems [1], machine
tool calibration [32], and urban traffic management [29]. Typically,
these planning approaches rely on a utility function, i.e., a single
aggregate function indicating the utility or satisfaction level related
to relevant quality attributes (such as timeliness, safety, or energy
efficiency). Utility functions are widely used to specify optimiza-
tion objectives for adaptation planning and have been successfully
applied to self-adaptive systems in the past [8, 10, 15, 19, 40, 40]. In
case multiple candidate plans for adaptation exist, as is often the
case in practice, the one with the highest expected utility value is
selected by the automated planner. Besides utility functions, con-
straints are commonly used to define requirements that must not
be violated, e.g., that the system must preserve a minimum battery
level to prevent it from running out of energy. These constraints
are used to generate possible plans, among which the optimal one
is chosen based on the expected utility.

When applying automated planning in practice, utility functions
and constraints are typically specified before the system’s execution.
While goal-oriented approaches have been proposed to capture a
system’s objectives [2, 14, 30, 35], few techniques exist that support
the lightweight adaptation of utility functions and constraints de-
pending on the system’s context and changing stakeholder needs.
Changes in stakeholder preferences and in a system’s environment,
however, might require a reprioritization and adjustment of quality
attributes [27, 37], including the resolution of conflicts between con-
straints. This need for quality attribute adjustment is not generally
fulfilled by self-adaptive systems [22].

In this paper, we present an approach for the adaptation of quality
attributes for automated planning at run time. It relies on mecha-
nisms to semi-automatically adapt constraints and utility functions
based on changes in a system’s environment or stakeholder input.
We demonstrate the feasibility of our approach by applying it to a
robotic system and present a preliminary experimental evaluation
alongside our envisioned research agenda.

https://doi.org/10.1145/3524844.3528063
https://doi.org/10.1145/3524844.3528063
https://doi.org/10.1145/3524844.3528063

SEAMS ’22, May 18–23, 2022, PITTSBURGH, PA, USA Rebekka Wohlrab, Rômulo Meira-Góes and Michael Vierhauser

The remainder of this paper is structured as follows: Section 2
presents an example scenario and Section 3 introduces concepts for
planning. In Section 4, we describe our approach, whose evaluation
we present in Section 5.We further describe our envisioned research
outlook in Section 6, followed by related work in Section 7.

2 MOTIVATING EXAMPLE
To motivate our approach, we use the example of a robot that
performs a series of tasks, for example, moving goods as part of a
Cyber-Physical Production System.

Figure 1 illustrates a scenario of a robot repeatedly moving from
location 1○ to 6○ (e.g., to pick up items at a rack at 6○).

In our mission planning example, we focus on three quality
attributes: safety, to avoid collisions with obstacles; privacy, to
not intrude humans’ personal spaces; and the travel time of the
robot when executing a mission. An automated planner is used
to generate policies that take these quality attributes into account.
The planner relies on a utility function whose value should be
maximized by the generated plan. The utility depends on the costs
in terms of safety, privacy, and travel time. In the example, the
safety cost is 1 for each traversed semi-occluded path segment and
2 for each traversed occluded path segment. The privacy cost is 1
for each semi-private location and 2 for each private location that
is visited. The travel time is set to the traveled distance (indicated
by the labels of the edges in Figure 1) multiplied by a speed factor
(which can be either 0.5 or 1.0 in the example). Based on the cost
𝑐𝑖 (𝑝) of a quality attribute 𝑄𝐴𝑖 , the utility of a policy 𝑝 in terms of
that quality attribute is defined as𝑢𝑖 (𝑝) = 1−𝑐𝑖 (𝑝)/𝑚𝑎𝑥𝑜∈Π{𝑐𝑖 (𝑜)},
indicating how “bad” the cost of 𝑝 is in comparison to the maximum
cost for any possible generated policy 𝑜 . The overall utility of 𝑝 is
then calculated using utility function weights𝑤𝑖 , which indicate
the importance of each quality attribute. The utility is defined as:

𝑢 (𝑝) = Σ𝑖∈𝑄𝐴𝑤𝑖𝑢𝑖 (𝑝)

In our example, the initial utility function weights are set to 0.333
for safety, privacy, and travel time, i.e., all quality attributes have
equal importance. As we describe in Section 5, when using equal
utility function weights, the optimal path in the example would
be via 4○ and 5○. Besides utility function weights, constraints may
need to be considered when generating a set of possible plans at run
time. In this paper, we consider the following kinds of constraints:
(1) bounding measures constraints (e.g., setting a deadline of 3.5

time units for a task, to meet business owner requirements);
(2) proximity constraints (e.g., avoiding that a robot moves to a

location that is too close to a human or another robot);
(3) speed limit constraints (to comply with safety regulations).

2 3

6

1
Occluded path segment

Semi-occluded path segment

Private location

Semi-private location

1 1

path back to start

1.414

Start/Goal

4 5
1

1.118

1.118

1.118

Figure 1: Example of a robotic mission planning context

In our example, both utility functions and constraints might need
to be adjusted in response to four kinds of possible run-time events:
(1) Map changes: a human enters the area and locations need to be

avoided for privacy or safety reasons;
(2) Task changes: the task is changed to transport a fragile item,

which requires new constraints and a higher priority of safety;
(3) Stakeholder preference changes: the utility function has to be

adjusted to better meet stakeholders’ changing preferences;
(4) Regulatory or restricting changes: new restrictions or regulations

may result in constraints being added, updated, or removed.
For the remainder of this paper, we consider the following sce-

nario: The robot’s task changes and it needs to deliver a valuable
or dangerous item that increases the importance of safety. To ac-
commodate for this change, the weight of safety is changed to 0.9,
the weight of travel time to 0.1, and the weight of privacy to 0.
Moreover, a key stakeholder enters the map and makes location
5○ unavailable (imposing a proximity constraint). Visiting the lo-
cation should not only be penalized, but must not occur. These
changes have an impact on the selected plans, as we describe in
our evaluation (Section 5).

3 PRELIMINARIES
In this section, we provide a brief introduction to the underlying
concepts and the formalism that our approach relies on.

Markov Decision Processes. Our automated planning approach
builds upon techniques in Markov Decision Processes (MDPs) [24].
An MDP is a tuple𝑀 := (𝑄,𝐴𝑐𝑡, 𝑃, 𝑞0, 𝐿, 𝑅), where 𝑄 is a finite set
of states, 𝑞0 ∈ 𝑄 is an initial state, 𝐴𝑐𝑡 is a finite set of actions,
𝑃 : 𝑄 × 𝐴𝑐𝑡 × 𝑄 → [0, 1] is a probability transition function,
𝐿 : 𝑄 → 2𝐴𝑃 is a labeling function that maps states to a set of
atomic propositions in 𝐴𝑃 , and 𝑅 is a finite set of cost functions
𝜌 : 𝑄 × 𝐴𝑐𝑡 → R≥0 that associate non-negative values to every
state and action pair.

Intuitively, the labeling function and the cost functions are used
to define the quality attributes involved in the planning process. For
example, the labeling function is used to define constraints, such
as to avoid certain locations in the map. Cost functions quantify
the policy and we can define constraints so that the cost is within
a certain interval.

Policies. A policy for MDP 𝑀 resolves the nondeterministic
choices in𝑀 by selecting an action to take in every state. Although
there are multiple classes of policies, in this work, we use deter-
ministic memoryless policies. Formally, a policy in𝑀 is defined as
𝑝 : 𝑄 → 𝐴𝑐𝑡 that maps states into actions. The set of all policies
of 𝑀 is denoted by Π. Under policy 𝑝 , the behavior of 𝑀 is fully
probabilistic and it can be represented by an induced discrete-time
Markov chain [24].

Temporal properties. To synthesize policies that satisfy certain
objectives and constraints, we utilize the framework of probabilistic
temporal logic PCTL, which is used to quantify properties related
to probabilities and rewards in system specifications modeled as
MDPs [5, 12]. For example, the objective of the robot in Figure 1 is
to reach state 6○ while minimizing travel time, intrusiveness, and
collision (maximizing safety), which can be described as a PCTL

Run-Time Adaptation of Quality Attributes
for Automated Planning SEAMS ’22, May 18–23, 2022, PITTSBURGH, PA, USA

´

(3) Model
Creator

preferences
constraints

(1) Quality
Attribute
Configurator

(2) Quality Attribute
Adapter

Knowledge Base

(5) Reasoning Engine

(4) Policy
Synthesizer

MDP
properties

utility function
constraints

environment changes

task changes
changed/added user input
A

B

C run-time data

policy
conflicts

Figure 2: High-level overview of the main components of our approach

formula. Formally, the syntax of PCTL for an MDP𝑀 is defined as:

𝜙 ::= 𝑡𝑟𝑢𝑒 | 𝑐 | 𝜙 ∧ 𝜙 | ¬𝜙 | P∼𝑏 [𝜓] | R
𝜌
∼𝑟 [𝐶] | R

𝜌
∼𝑟 [𝐹𝜙]

𝜓 ::= 𝑋𝜙 | 𝜙𝑈 ≤𝑘𝜙 | 𝜙𝑈𝜙

where 𝑐 ∈ 𝐴𝑃 is an atomic proposition, ∼∈ {≤, <, ≥, >}, 𝑏 ∈ [0, 1]
is a probability bound, 𝑟 ∈ R≥0 is a reward bound, and 𝜌 ∈ 𝑅 is a
cost function.

The semantics of PCTL formulas are formally defined over the
policies of𝑀 , e.g., see [5, 12]. Herein, we provide intuition on their
semantics using a few examples. The operator P≤𝑏 [𝜓] specifies
that the probability of taking a path starting in 𝑞0 that satisfies
property𝜓 is smaller or equal than 𝑏 for all policies 𝑝 . Similarly, the
reward operator R𝜌

∼𝑟 [𝐶] establishes that the expected cumulative
cost for cost function 𝜌 is ∼ 𝑟 for all policies. Lastly, the reward
operator R𝜌

∼𝑟 [𝐹𝜙] holds if the total expected cost for cost function
𝜌 before reaching a state that satisfies 𝜙 is ∼ 𝑟 for all policies.

We also allow to replace ∼ with𝑚𝑖𝑛 =? or𝑚𝑎𝑥 =? to specify the
calculation of the minimum/maximum probability (or reward) over
all MDP policies.

4 APPROACH
Figure 2 provides an overview of the main parts of our approach for
run-time quality attribute adaptation: (1) a Quality Attribute Con-
figurator that facilitates user input; (2) a Quality Attribute Adapter
responsible for analyzing run-time data and user input, resolving
conflicts between constraints, and defining the utility function and
constraints to be used by the system; (3) a Model Creator that takes
the provided constraints and utility function as an input and gener-
ates an MDP and PCTL properties; (4) a Policy Synthesizer that uses
the MDP and PCTL properties to generate a mission policy that can
then be executed by a self-adaptive system. The Quality Attribute
Adapter uses (5) a Reasoning Engine to analyze and plan changes to
the utility function and constraints, relying on collected run-time
data and triggered changes. In our scenario, run-time data refers to
any data that can be observed and collected from a running system,
such as the current trajectory of a robot, quality measures, sensor
data, or detected objects/persons in the environment.

As part of our approach, we currently consider the following
changes: (A) new user input, for example, related to changed pref-
erences or constraints, (B) task changes, and (C) changes to the
environment (cf. Section 2). A central knowledge base is used to cap-
ture user preferences, constraints, utility functions, current tasks,
and the current state of the environment in the form of run-time
models. This knowledge base is continuously updated based on
collected run-time data and user input.

The run-time adaptation of quality attributes can be used to
replan at run time, when parts of the plan are being executed. For
instance, if any of the listed changes occur when the robot in our
running example is at location 4○, replanning with the new input
can help to decide which path should be selected for the remainder
of the mission. Note that run-time replanning can be costly. We
discuss ways to address this issue in Section 6.

In the following, we describe the components in further detail.

4.1 Quality Attribute Configurator
Before a mission is executed, stakeholders can specify preferences
and constraints for a set of quality attributes. Preferences are used
to indicate their priorities, whereas constraints can be defined to
specify restrictions (such as upper and lower bounds) or invariants
that should be guaranteed by the system. For instance, users might
want to constrain the battery level to always be above 10% (ensur-
ing that the robot is not running out of energy, so that a mission
can be safely completed). The Quality Attribute Configurator also
serves as a dashboard, presenting preferences and constraints in a
consolidated view, requesting user input in case of conflicts, and
providing insights into the system’s state and behavior at run time.

4.2 Quality Attribute Adapter
The Quality Attribute Adapter executes a reasoning engine to gen-
erate a utility function and constraints that should be used during
planning. In this paper, we assume the utility function to be a
weighted sum of quality attributes [42], where the weights indicate
the priorities of each quality attribute. The quality attribute adap-
tation is based on the indicated preferences and constraints from
stakeholders, which are stored in the knowledge base. If safety-
related conflicts between constraints occur or it is not possible
to create a utility function based on the user input, stakeholders
are prompted for input. The call for active human participation
is motivated by safety standards requiring human assessment of
changes that affect safety-critical constraints. Once all input has
been consolidated, the utility function and constraints are used by
the Model Creator.

4.3 Model Creator
The Model Creator develops the MDP and PCTL properties to be
used during policy synthesis. The MDP and properties are created
based on the current task that should be executed, a model of the
current environment/plan, for example, a map of waypoints, and
the previously defined utility functions and constraints.

SEAMS ’22, May 18–23, 2022, PITTSBURGH, PA, USA Rebekka Wohlrab, Rômulo Meira-Góes and Michael Vierhauser

Using information provided by stakeholders about the environ-
ment (Knowledge Base in Figure 2), the Model Creator creates an
MDP model which includes (at least) a state for each location in the
map, actions to transition between states (e.g., to move to another
location or change the speed), and a reward structure capturing the
cost obtained in each state for each quality attribute. In other words,
the MDP models the environment in which the planning task takes
place. In the following, we describe how constraints and costs are
captured in the verification property and in reward structures.

4.3.1 Representation of quality attribute priorities. We consider
weighted sum utility functions in this paper, where the utility func-
tion weights 𝑤𝑖 indicate the priorities or importance of quality
attributes. Approaches for defining weighted sum utility functions
for self-adaptive systems based on stakeholder preferences have
been previously proposed, e.g., in [46]. When creating the MDP
model for policy synthesis, each quality attribute is coupled to a
cost function. In this manner, we consider a multi-objective cost
function 𝑐 of MDP 𝑀 as a linear scalarization of all cost func-
tions: 𝑐 (𝑞, 𝑎) = ∑

𝑖∈𝑄𝐴𝑤𝑖𝑐𝑖 (𝑞, 𝑎), where𝑤𝑖 are the utility function
weights. To avoid that certain QAs have too much impact on the
results, the cost functions 𝑐𝑖 are normalized as in [41]. The PCTL
formula R𝑐

min [𝐶] specifies that 𝑐 should be minimized.

4.3.2 Representation of constraints. While the cost function 𝑐 based
on quality attributes ranks the policy planning space, a set of con-
straints restricts this policy space. In other words, a set of con-
straints excludes policies that violate any of the specified con-
straints. For example, constraining the robot to avoid location 5○ in
Figure 1 limits its actions in location 4○, i.e., it cannot move to loca-
tion 5○. In this work, we consider two types of constraints: safety
constraints and bounding cost functions. These constraints support
the properties listed in Section 2: bounding measures constraints,
proximity constraints, and speed limit constraints.

Safety constraints: Safety constraints are related to safety prop-
erties in model checking [26]. Note that not all safety properties
are safety-critical constraints. Informally, safety properties specify
that something “bad” should never occur. Safety properties can
introduce proximity constraints and speed limit constraints. For
example, constraining the robot to avoid location 5○ in Figure 1 is
a safety constraint. In this case, any visit to location 5○ is “bad”. All
policies that avoid this location satisfy this safety constraint.

To formally define safety constraints, we introduce PCTL safety
formulas that the robot’s plan must satisfy. In this case, we use the
synthetic globally operator 𝐺𝜙 , which describes that the state for-
mula 𝜙 should always hold. For more details on PCTL formulas see,
e.g., [5, 12]. In this manner, the safety constraint to avoid location
5○ is described by the formula 𝐺 (¬ 5○).
Bounding cost functions: In this case, we restrict policies based

on their final expected cumulative reward, for example, constrain-
ing the robot to arrive at its final location within a certain time
limit. Only policies that satisfy this bound constraint will be consid-
ered, while the ones that violate it will be discarded. Formally, we
can use the reward operator R𝜌

∼𝑟 [𝐶] to specify these constraints.
Bounding cost functions can be used to express bounding measures
constraints. For example, if we want to bound the travel time of the
robot to be less than 5 time units, then we introduce the constraint
R𝑐𝑡
≤5 [𝐶], where 𝑐𝑡 is the travel time cost function.

4.3.3 Combining preferences and constraints: So far, we have de-
scribed how to define preferences and constraints using PCTL for-
mulas. However, these formulas were defined separately and hence
can not be directly combined. For example, we cannot combine
a PCTL formula with a probability operator and one with a re-
ward operator. For this reason, we combine all the constraints
using multi-objective definition [13]. In our robot planning exam-
ple, we define the following multi-objective goal:𝑚𝑢𝑙𝑡𝑖 (R𝑐

min [𝐶],
P≥1 [𝐹 6○ ∧𝐺 (¬ 5○)], R𝑐𝑡

≤5 [𝐶]). The first objective is to minimize
the multi-objective cost function 𝑐 . Next, we want to reach state
6○ while avoiding 5○ with probability 1. Finally, the last objective
states that the expected travel time should be less than or equal to
5. Generally, the multi-objective goal is defined as:𝑚𝑢𝑙𝑡𝑖 (R𝑐

min [𝐶],
P≥1 [𝐹𝜙𝑔𝑜𝑎𝑙 ∧ 𝜙𝑠𝑎𝑓 𝑒], bounding1, . . . , bounding𝑛), where 𝜙𝑔𝑜𝑎𝑙 de-
fines the reachability goal, 𝜙𝑠𝑎𝑓 𝑒 defines the safety constraint, and
each bounding𝑖 defines a bounding constraint. Note that the multi-
objective goal has only one optimization task, i.e., R𝑐

min [𝐶].

4.4 Policy Synthesizer
The Policy Synthesizer executes the MDP based on the PCTL prop-
erty defined in the previous step. It outputs a mission policy that
can be translated into a sequence of actions to be executed by a
self-adaptive system.

The output from the Policy Synthesizer is also used to calculate
the policy’s utility. In Section 2, we defined the utility function of a
policy using the cost functions to describe how “bad” the cost of
𝑝 is in comparison to the maximum cost for any possible policy.
In this paper, we define it as 𝑢𝑖 (𝑝) = 1 − 𝑐𝑖 (𝑝)/max𝑜∈Π{𝑐𝑖 (𝑜)},
although for other contexts different cost functions might be more
appropriate. To avoid policies with infinite cost, we assume that
the graph representation of the map does not have any loops. We
compute the maximal cost for each cost function using the PCTL
formula R𝑐𝑖max [𝐹𝜙], where 𝜙 defines the goal states. The overall
utility of a policy is then calculated using utility function weights
𝑤𝑖 as: 𝑢 (𝑝) =

∑
𝑖∈𝑄𝐴𝑤𝑖𝑢𝑖 (𝑝). Lastly, given a policy 𝑝 , we can also

calculate the cost 𝑐𝑖 (𝑝) for each cost function using the MDP model.

4.5 Reasoning Engine
Our approach uses a rule-based reasoning engine to analyze data
in the knowledge base and create a utility function and set of con-
straints. The advantage of using a reasoning engine is that rules
can be adjusted to the specific contexts of a system. Being based on
rules, our approach can provide certain guarantees of how utility
functions and constraints will be adjusted in a given situation.

We use Drools [33] as a reasoning engine. It is triggered by the
Quality Attribute Adapter and operates on the knowledge base.
Rules can be specified to automatically adjust utility functions (e.g.,
to increase the weight of privacy when a stakeholder enters the
map). Drools rules can also be specified to deal with constraints.
Conflicts between pairs of constraints might occur, implying that
not both can be fulfilled at the same time. For conflicts between
hard constraints, it is not possible to automatically compute a reso-
lution, but stakeholder input needs to be collected to decide which
constraints should hold.

Run-Time Adaptation of Quality Attributes
for Automated Planning SEAMS ’22, May 18–23, 2022, PITTSBURGH, PA, USA

Listing 1: Example rule to handle conflicting constraints
rule resolveConflict

salience 5
when
$cons: Constraint($myQA: getQA(),

isLowerBound (), $myValue: getValue ())
$otherCons: Constraint(

getQA ()== $myQA, isUpperBound (),
getValue () < $myValue,
$otherValue : getValue ())

then
Constraint $new = new Constraint($myQA,

($myValue + $otherValue) / 2)
$new.setEqual ()
insert($new)
addConflictTrace($new,$cons)
addConflictTrace($new,$otherCons)

end

Listing 1 shows an example Drools rule to deal with conflicts
between soft constraints. The conflict occurs if a soft constraint
$cons restricts the lower bound of a quality attribute measure to a
value higher than the upper-bound value of another soft constraint
$otherCons. In such a case, the rule creates a new constraint that
requires the measure to be equal to the mean value of the two
conflicting constraints. A trace link is created to the two previ-
ous constraints and the system can resume planning without any
constraint conflicts.

In practice, there are multiple ways of dealing with conflicting
constraints, and choosing the mean might only be a valid default
strategy for soft constraints. Other rules (e.g., to keep constraints
based on their priorities or the authority levels of stakeholders)
can be added to arrive at different conflict resolution behavior,
depending on the current context and stakeholder needs. Fallback
strategies can be specified to deal with unknown contexts.

5 PRELIMINARY EVALUATION
In order to assess the applicability of our approach and to evaluate
the potential benefit of adapting constraints and utility functions,
we conducted a preliminary evaluation using our previously men-
tioned example scenario. We focus on the adaptation of constraints
and utility functions using the Quality Attribute Adapter and the
utilities of the generated policies.

5.1 Evaluation Setup
We use the example described in Section 2 of a warehouse in which
a robot performs tasks that include traveling from the start location,
visiting a location (e.g., to collect items), and returning to its initial
location. We use the map shown in Figure 1. Although our frame-
work supports MDP models in general, for the sake of simplicity
of our explanations, we present an example with a deterministic
MDP (without probabilities).

For the experiments, we calculated the (1) obtained utility values,
(2) costs, and (3) the generated policies with and without adaptation
considering different utility function weights and constraints. As
quality attributes we selected safety, which describes the number of
expected collisions, the completion time of the plan, and privacy (i.e.,
non-intrusiveness of humans’ personal spaces), which is measured

Figure 3: Initial results with/without QA adaptation

by the number of traversed private or semi-private locations. While
design-time calculations can be used to verify the experimental
results, the actual quality attribute adaptation in our approach is
performed at run time.

For policy synthesis, we used the off-the-shelf probabilisticmodel
checker PRISM1 [25] to generate plans for a robot to travel from 1○
to 6○ using the following utility function weights and constraints:
(1) Equal weights for all three quality attributes (0.333) and no

constraints (for the planner without adaptation);
(2) Adjusted weights to support the delivery of a valuable/dan-

gerous item: 0.9 for 𝑤𝑠𝑎𝑓 𝑒 , 0.1 for 𝑤𝑡𝑖𝑚𝑒 , 0 for 𝑤𝑝𝑟𝑖𝑣 (for the
planner with an adapted utility function)

(3) A human enters the map and makes location 5○ unavailable to
travel through (for the planner with an adapted constraint)

5.2 Evaluation Results
This section presents the results of our preliminary evaluation.

Figure 3 shows the obtained utility for the example scenario. The
results stem from the cost and utility calculations in Table 1. It is

1http://www.prismmodelchecker.org

Table 1: Cost and utilities of different plans depending on
utility functions and constraints

𝑤𝑠𝑎𝑓 𝑒𝑤𝑡𝑖𝑚𝑒 𝑤𝑝𝑟𝑖𝑣 con-
straint

Plan
(optimal)

𝑐𝑠𝑎𝑓 𝑒 𝑐𝑡𝑖𝑚𝑒 𝑐𝑝𝑟𝑖𝑣 𝑢𝑠𝑎𝑓 𝑒 𝑢𝑡𝑖𝑚𝑒 𝑢𝑝𝑟𝑖𝑣 𝑢

0.333 0.333 0.333 no 2, 3 1 3.414 3 0.667 0.065 0 0.243
4, 3 2 3.65 1 0.333 0 0.667 0.333
4, 5 (✓) 3 3.236 0 0 0.113 1 0.371

0.333 0.333 0.333 yes 2, 3 1 3.414 3 0.5 0.065 0 0.188
4, 3 (✓) 2 3.65 1 0 0 0.667 0.222
4, 5 violates constraint (forbid location 5) 0

0.9 0.1 0 no 2, 3 (✓) 1 3.414 3 0.667 0.065 0 0.607
4, 3 2 3.65 1 0.333 0 0.667 0.3
4, 5 3 3.236 0 0 0.113 1 0.011

0.9 0.1 0 yes 2, 3 (✓) 1 3.414 3 0.5 0.065 0 0.457
4, 3 2 3.65 1 0 0 0.667 0
4, 5 violates constraint (forbid location 5) 0

http://www.prismmodelchecker.org

SEAMS ’22, May 18–23, 2022, PITTSBURGH, PA, USA Rebekka Wohlrab, Rômulo Meira-Góes and Michael Vierhauser

shown how the utility changes depending on whether the utility
function, constraints, or both are adapted, or whether no adaptation
is used. In the table, the utility function weights𝑤𝑖 are shown, along
with whether or not the example constraint (of forbidding 5○) is
considered. For each plan, it is indicated whether it is optimal and
the cost and utilities in different quality attribute dimensions are
shown (𝑐𝑖 for costs, 𝑢𝑖 for utilities). In all columns, 𝑠𝑎𝑓 𝑒 stands
for safety, 𝑡𝑖𝑚𝑒 for the travel time, and 𝑝𝑟𝑖𝑣 for privacy. Finally,
the total utility 𝑢 is shown in the rightmost column, which is the
weighted sum of the utilities of different quality attributes.

For our evaluation example, we assume all initial utility function
weights to be 0.333 in the no-adaptation system (leading to a fixed
policy via 4○ and 5○, which is used as the plan without adaptation).
In the scenario of the task change that requires safety to be priori-
tized higher and the weights to be adjusted to (0.9, 0.1, 0), the policy
via 2○ and 3○ is selected, leading to a utility of 0.607. On the other
hand, the no-adaptation plan has a utility of 0.011 (as it would still
select the policy via 4○ and 5○). When considering the example
constraint (i.e., making location 5○ unavailable), the no-adaptation
system would be unable to plan for it and arrive at a utility of 0.
Note that because the plan via 4○ and 5○ is not usable anymore,
the utilities of the quality attributes need to be recalculated, given
that the maximum cost might have changed. For instance, while
the maximum cost of collision was 3 for the no-constraint plans, it
is 2 now that the plan via 4○ and 5○ is disregarded, which impacts
the obtained utilities for the two other plans.

In the case of constraint adaptation, it is possible for our adaptive
framework to plan a policy by avoiding location 5○ and achieve a
utility of 0.222 by choosing the path via 4○ and 3○ (assuming that all
utility function weights are 0.333). In case both the utility function
and constraint are adapted, the utility of the adapted system is 0.457
(in comparison to 0 for the no-adaptation system).

6 DISCUSSION AND RESEARCH OUTLOOK
Results from our preliminary evaluation have shown that adapting
quality attributes can provide plans with higher utilities. Depending
on the concrete system and mission in a specific context, the utility-
focused evaluation can result in more or less substantial findings.
In our case, the difference was highest (i.e., 0.596) for the scenario
in which only the utility function needed to be adapted.

To further evaluate our approach, we plan to run experiments
with real-world systems and assess the required effort when adapt-
ing quality attributes. Our approach involves the re-construction of
the model and the synthesis of a new policy at run time, which can
induce a high overhead. To address this issue, hybrid planning [31]
or plan reuse [23] can be leveraged to reduce the cost of replanning,
react as quickly as needed, and potentially reuse pre-computed
plans. In certain situations, for example, if a location is only un-
available during a limited time interval, it might not be beneficial
to replan the policy and adapt quality attributes. The goal should
be to have a sufficiently stable policy in most contexts and only
replan when needed.

Moreover, our approach does not need to be based on policy syn-
thesis using MDPs but could also employ other automated planning
techniques. We envision our approach to be applicable to diverse
self-adaptive systems with MAPE-K components. As an integrated

part of a system, our approach can inform the design of these com-
ponents, e.g., to define what monitoring data should be collected
to trigger quality-related changes, or how and when re-planning
should occur.

With our initial prototype and application example, we have
demonstrated that our approach can be leveraged to increase the
utility obtained by selected plans, considering changed utility func-
tions and constraints. Based on these initial results, we are planning
to extend our work and specifically target four main areas:

Diverse types of constraints: Up until now our approach sup-
ports defining constraints that limit the measures of a quality at-
tribute or restrict the proximity or speed of self-adaptive systems.
Additional types of constraints to support are, for instance, temporal
logic constraints (so that time-bound constraints can be expressed).
Conflicts between different types of constraints might need to be
resolved with different strategies. For hard constraints, it is not
feasible to resolve conflicts automatically, and stakeholder input
needs to be collected.

Different types of preference representations:While we fo-
cus on weighted sum utility functions in this paper, the approach
can be extended to support other kinds of utility functions (e.g.,
weighted products [42]) by adjusting the Model Creator and Policy
Synthesizer. However, in practice, it can be a non-trivial task to
define utility functions. Certain systems and contexts might require
different preference representations. For instance, it can be desir-
able to compute “knee points”, which are well-balanced trade-offs
between several objectives [6, 16]. Future work can incorporate
this notion, so that knee-point solutions are selected by default
and alternative solutions can be chosen when priorities of quality
attributes change.

Support for stakeholder input and explainability: In our
envisioned approach, stakeholders should be able to indicate pref-
erences and constraints at run time. Understanding the adaptation
behavior of the system is key to make appropriate decisions. Fu-
ture work will examine what the Quality Attribute Configurator
should look like, how adaptation actions can be explained, and how
decision support can be provided to assist stakeholders when giv-
ing input, resolving conflicts, and making decisions. Mechanisms
can be added to elicit preferences and constraints for previously
unconsidered quality attributes. To deal with scalability issues, we
aim to limit the required stakeholder input by initially eliciting
default preferences and constraints [46] and adjusting them only
in specific situations. Our approach is semi-automatic and involves
stakeholders only when needed (e.g., when dealing with hard or
safety-critical conflicting constraints).

Evaluation of the approach: To evaluate the proposed ap-
proach, we intend to perform a human subjects study. The focus
will lie on the ease of use and the understandability of our approach.
The study can be performed as a think-aloud study (to elicit par-
ticipants’ mental models while working with the tool/approach).
Additionally, controlled experiments can be conducted to under-
stand whether the provided explanations can help humans make
decisions more confidently and deliberately in comparison to users
that select utility functions without any guidance.

Run-Time Adaptation of Quality Attributes
for Automated Planning SEAMS ’22, May 18–23, 2022, PITTSBURGH, PA, USA

7 RELATEDWORK
Our approach addresses the need to manage requirements for self-
adaptive systems, deal with uncertainty, and involve users in in-
teractive decision-making at run time [4]. Relevant related work is
concerned with the run-time adaptation of utility functions, con-
straints, and goal models.

Adjusting utility functions at run time: While utility functions
have been widely used for self-adaptive systems [8, 9, 11, 15, 17, 40],
only in recent years, the need has been raised to re-adjust util-
ity functions at run time [22, 27] based on changing user pref-
erences [27]. One approach that focuses on this issue switches
between “variants” of utility functions depending on the system’s
context [21]. Another approach uses fuzzy logic to adapt utility
functions based on predefined adaptation rules [3]. Instead of re-
quiring stakeholders to describe rules for all possible contexts at
design time, our approach supports user input at run time.

The topic of utility function adaptation is similar to recent work
on adjusting priorities at run time [36], which uses ML techniques
to adjust priorities of quality attributes (which are similar to our
utility function weights) to ensure that QoS constraints are met.

Adjusting constraints at run time: Several tools have been pro-
posed to detect and resolve conflicts between requirements, e.g., the
Oz System that can automatically detect conflicts and find compro-
mise solutions [34]. For self-adaptive systems, Song et al.’s approach
elicits end user preferences and constraints, which are used to find
a solution for a constraint satisfaction problem that minimizes the
number of violated goals [39].

The language RELAX allows stakeholders to specify require-
ments for self-adaptive systems under uncertainty and supports
several operators to indicate how a requirement can be relaxed at
run time [45]. The issue of conflicting requirements is mentioned,
along with the potential use of temporal constraint analysis to
identify inconsistent pairs of RELAX constraints [38].

In the context of smart cities, a decision support system has
been developed that uses Integer Linear Programming to resolve
conflicts between constraints [28]. Our work is similar in the sense
that it collects input from stakeholders at run time and supports
the semi-automatic resolution of constraints.

Goal-oriented self-adaptation: Several approaches have applied
goal modeling in the context of self-adaptive systems [2, 14, 30, 35].
For example, FLAGS [2] uses KAOS and LTL to support the run-time
adaptation of goals. ActivFORMS [18] supports goal model adapta-
tion at run time and uses the Uppaal model checker for checking
TCTL expressions. While ActivFORMS allows to change and verify
goals at run time, our work is more strongly focused on quality
attributes and provides mechanisms for conflict resolution. Another
approach combines KAOS and RELAX to identify and mitigate un-
certainty factors in requirements for self-adaptive systems [7]. In
the domain of CPS architecture adaptation, an approach [14] for
architectural self-adaptation has been developed based on goal mod-
els and predictive monitoring to deal with operational uncertainty.
While these approaches tackle important aspects of self-adaptive
systems, they do not focus on the adaptation of quality attributes
based on run-time user input and conflict resolution.

The issue of conflicts in goal-oriented requirements engineering
has also been studied, along with solution strategies (e.g., goal

weakening or resolution heuristics) [43]. We plan to build upon that
work to inform the development of conflict resolution mechanisms.

8 CONCLUSION
In this paper, we have presented an initial approach for the dynamic
adaptation of quality attributes for automated planning. Our ap-
proach supports the semi-automatic adjustment of utility functions
and constraints, including support to process input from multiple
stakeholders and resolve conflicts between soft constraints. Our
evaluation indicated that the approach can lead to higher utility
values in comparison to approaches that do not support the adapta-
tion of utility functions and constraints. We presented a research
outlook that includes directions for future work, such as support-
ing different types of constraints and preference representations,
creating comprehensible interfaces, and evaluating the approach.
As part of our ongoing work, we are implementing a system to
support the described approach, designing an empirical study for
evaluation, and developing a comprehensive user interface to elicit
stakeholder input and support explainability.

ACKNOWLEDGMENTS
Thisworkwas partially supported by theWallenbergAI, Autonomous
Systems and Software Program (WASP) funded by the Knut and
Alice Wallenberg Foundation, and the Linz Institute of Technology
(LIT-2019-7-INC-316).

SEAMS ’22, May 18–23, 2022, PITTSBURGH, PA, USA Rebekka Wohlrab, Rômulo Meira-Góes and Michael Vierhauser

REFERENCES
[1] Jonathan Aldrich, David Garlan, et al. 2019. Model-based adaptation for robotics

software. IEEE Software 36, 2 (2019), 83–90.
[2] Luciano Baresi, Liliana Pasquale, and Paola Spoletini. 2010. Fuzzy goals for

requirements-driven adaptation. In Proceedings of the 18th International Require-
ments Engineering Conference. IEEE, 125–134.

[3] Mounir Beggas, Lionel Médini, Frederique Laforest, and Mohamed Tayeb Laskri.
2013. Fuzzy Logic Based Utility Function for Context-Aware Adaptation Planning.
Springer International Publishing, Cham, 227–236.

[4] Nelly Bencomo, Jon Whittle, Pete Sawyer, Anthony Finkelstein, and Emmanuel
Letier. 2010. Requirements reflection: requirements as runtime entities. In Pro-
ceedings of the ACM/IEEE 32nd International Conference on Software Engineering,
Vol. 2. ACM, New York, 199–202. https://doi.org/10.1145/1810295.1810329

[5] Andrea Bianco and Luca de Alfaro. 1995. Model checking of probabilistic and
nondeterministic systems. In Foundations of Software Technology and Theoretical
Computer Science, P. S. Thiagarajan (Ed.). Springer Berlin Heidelberg, 499–513.

[6] Tao Chen, Ke Li, Rami Bahsoon, and Xin Yao. 2018. FEMOSAA: Feature-Guided
and Knee-Driven Multi-Objective Optimization for Self-Adaptive Software. ACM
Transactions of Software Engineering and Methodology 27, 2, Article 5 (jun 2018).
https://doi.org/10.1145/3204459

[7] Betty H. C. Cheng, Pete Sawyer, Nelly Bencomo, and Jon Whittle. 2009. A Goal-
Based Modeling Approach to Develop Requirements of an Adaptive System with
Environmental Uncertainty. In Proceedings of the International Conference on
Model Driven Engineering Languages and Systems, Andy Schürr and Bran Selic
(Eds.). Springer Berlin Heidelberg, 468–483.

[8] Shang-Wen Cheng, David Garlan, and Bradley Schmerl. 2006. Architecture-
based self-adaptation in the presence of multiple objectives. In Proceedings of
the International Workshop on Self-Adaptation and Self-Managing Systems. ACM,
New York, 2–8. https://doi.org/10.1145/1137677.1137679

[9] Javier Cámara, Antónia Lopes, David Garlan, and Bradley Schmerl. 2016. Adapta-
tion impact and environment models for architecture-based self-adaptive systems.
Science of Computer Programming 127 (2016), 50–75.

[10] Naeem Esfahani, Ahmed Elkhodary, and Sam Malek. 2013. A learning-based
framework for engineering feature-oriented self-adaptive software systems. IEEE
Transactions on Software Engineering 39, 11 (2013), 1467–1493.

[11] Funmilade Faniyi, Peter R. Lewis, Rami Bahsoon, and Xin Yao. 2014. Architecting
Self-Aware Software Systems. In Proceedings of the 2014 IEEE/IFIP Conference on
Software Architecture. IEEE, 91–94. https://doi.org/10.1109/WICSA.2014.18

[12] Vojtěch Forejt, Marta Kwiatkowska, Gethin Norman, and David Parker. 2011.
Automated Verification Techniques for Probabilistic Systems. Springer Berlin
Heidelberg, Berlin, Heidelberg, 53–113.

[13] V. Forejt, M. Kwiatkowska, G. Norman, D. Parker, and H. Qu. 2011. Quantitative
Multi-Objective Verification for Probabilistic Systems. In Proceedings of the 17th
International Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS’11). Springer, 112–127.

[14] Ilias Gerostathopoulos, Tomas Bures, Petr Hnetynka, Jaroslav Keznikl, Michal Kit,
Frantisek Plasil, and Noël Plouzeau. 2016. Self-adaptation in software-intensive
cyber-physical systems: From system goals to architecture configurations. Journal
of Systems and Software 122 (2016), 378–397.

[15] Carlo Ghezzi and Amir Molzam Sharifloo. 2013. Dealing with Non-Functional
Requirements for Adaptive Systems via Dynamic Software Product-Lines. In
Software Engineering for Self-Adaptive Systems II, Rogério de Lemos, Holger Giese,
Hausi A. Müller, and Mary Shaw (Eds.). Springer Berlin Heidelberg, 191–213.

[16] Sara Hassan, Nelly Bencomo, and Rami Bahsoon. 2015. Minimizing Nasty
Surprises with Better Informed Decision-Making in Self-Adaptive Systems. In
Proceedings of the 10th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS 2015). IEEE, 134–145. https:
//doi.org/10.1109/SEAMS.2015.13

[17] William Heaven, Daniel Sykes, Jeff Magee, and Jeff Kramer. 2009. A Case Study in
Goal-Driven Architectural Adaptation. In Software Engineering for Self-Adaptive
Systems. Springer Berlin Heidelberg, 109–127.

[18] M Usman Iftikhar and Danny Weyns. 2014. ActivFORMS: Active formal models
for self-adaptation. In Proceedings of the 9th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS 2014). ACM, New
York, 125–134.

[19] Paola Inverardi and Marco Mori. 2013. A software lifecycle process to support
consistent evolutions. In Self-Adaptive Systems, R. de Lemos (Ed.). Vol. 7475 LNCS.
Springer Berlin Heidelberg, 239–264.

[20] Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. 1998. Plan-
ning and acting in partially observable stochastic domains. Artificial intelligence
101, 1-2 (1998), 99–134.

[21] Konstantinos Kakousis, Nearchos Paspallis, and George Papadopoulos. 2008. Op-
timizing the Utility Function-Based Self-adaptive Behavior of Context-Aware
Systems Using User Feedback. In Proceedings of the OTM Confederated Interna-
tional Conferences. 657–674.

[22] Jeffrey Kephart. 2021. Viewing Autonomic Computing through the Lens of
Embodied Artificial Intelligence: A Self-Debate. Keynote at the 16th Symposium
on Software Engineering for Adaptive and Self-Managing Systems (SEAMS 2021).

[23] Cody Kinneer, Zack Coker, Jiacheng Wang, David Garlan, and Claire Le Goues.
2018. Managing uncertainty in self-adaptive systems with plan reuse and sto-
chastic search. In Proceedings of the 13th International Conference on Software
Engineering for Adaptive and Self-Managing Systems. IEEE, 40–50.

[24] H.S. Kushner. 1971. Introduction to Stochastic Control. Holt, Rinehart andWinston.
[25] M. Kwiatkowska, G. Norman, and D. Parker. 2011. PRISM 4.0: Verification of

Probabilistic Real-time Systems. In Proceedings of the 23rd International Conference
on Computer Aided Verification (CAV’11) (LNCS, Vol. 6806). Springer, 585–591.

[26] L. Lamport. 1977. Proving the Correctness of Multiprocess Programs. IEEE
Transactions on Software Engineering SE-3, 2 (1977), 125–143. https://doi.org/10.
1109/TSE.1977.229904

[27] Veronika Lesch, Marius Hadry, Samuel Kounev, and Christian Krupitzer. 2021.
Utility-based Vehicle Routing Integrating User Preferences. In Proceedings of the
2021 IEEE International Conference on Pervasive Computing and Communications
Workshops and other Affiliated Events. IEEE, 263–268.

[28] Meiyi Ma, John A. Stankovic, and Lu Feng. 2018. Cityresolver: A Decision Support
System for Conflict Resolution in Smart Cities. In Proceedings of the 9th ACM/IEEE
International Conference on Cyber-Physical Systems (Porto, Portugal) (ICCPS ’18).
IEEE Press, 55–64. https://doi.org/10.1109/ICCPS.2018.00014

[29] Thomas L. McCluskey, Mauro Vallati, and Santiago Franco. 2017. Automated
Planning for Urban Traffic Management. In Proceedings of the 26th International
Joint Conference on Artificial Intelligence (IJCAI’17). AAAI Press, 5238–5240.

[30] Mirko Morandini, Loris Penserini, Anna Perini, and Alessandro Marchetto. 2017.
Engineering requirements for adaptive systems. Requirements Engineering 22, 1
(2017), 77–103.

[31] Ashutosh Pandey, Gabriel A Moreno, Javier Cámara, and David Garlan. 2016.
Hybrid planning for decision making in self-adaptive systems. In Proceedings of
the 10th International Conference on Self-Adaptive and Self-Organizing Systems.
IEEE, 130–139.

[32] Simon Parkinson, Andrew Longstaff, Andrew Crampton, and Peter Gregory. 2012.
The application of automated planning to machine tool calibration. In Proceedings
of the 22nd International Conference on Automated Planning and Scheduling.

[33] Mark Proctor. 2011. Drools: a rule engine for complex event processing. In Pro-
ceedings of the International Symposium on Applications of Graph Transformations
with Industrial Relevance. Springer, 2–2.

[34] William N Robinson and Stephen Fickas. 1994. Supporting multi-perspective
requirements engineering. In Proceedings of the IEEE International Conference on
Requirements Engineering. IEEE, 206–215.

[35] Davide Rossi, Francesco Poggi, and Paolo Ciancarini. 2018. Dynamic high-level
requirements in self-adaptive systems. In Proceedings of the 33rd Annual ACM
Symposium on Applied Computing. ACM, New York, 128–137.

[36] Huma Samin, Nelly Bencomo, and Peter Sawyer. 2021. Pri-AwaRE: Tool Support
for priority-aware decision-making under uncertainty. In Proceedings of the 29th
International Requirements Engineering Conference (RE’21). IEEE, 450–451.

[37] Pete Sawyer, Nelly Bencomo, Jon Whittle, Emmanuel Letier, and Anthony Finkel-
stein. 2010. Requirements-Aware Systems: A Research Agenda for RE for Self-
adaptive Systems. In Proceedings of the 18th International Requirements Engineer-
ing Conference (RE’10). IEEE, 95–103. https://doi.org/10.1109/RE.2010.21

[38] Eddie Schwalb and Lluís Vila. 1998. Temporal constraints: A survey. Constraints
3, 2 (1998), 129–149.

[39] Hui Song, Stephen Barrett, Aidan Clarke, and Siobhán Clarke. 2013. Self-
adaptation with End-User Preferences: Using Run-Time Models and Constraint
Solving. In Proceedings of the International Conference onModel Driven Engineering
Languages and Systems (MODELS’13). Springer Berlin Heidelberg, 555–571.

[40] João Pedro Sousa, Rajesh Krishna Balan, Vahe Poladian, David Garlan, and Ma-
hadev Satyanarayanan. 2008. User guidance of resource-adaptive systems. In
Proceedings of the 3rd International Conference on Software and Data Technologies.
36–44.

[41] Roykrong Sukkerd, Reid Simmons, and David Garlan. 2018. Towards explainable
multi-objective probabilistic planning. In Proceedings of the 4th International
Workshop on Software Engineering for Smart Cyber-Physical Systems. ACM, 19–25.
https://doi.org/10.1145/3196478.3196488

[42] Evangelos Triantaphyllou. 2000.Multi-Criteria DecisionMakingMethods. Springer
US, Boston, MA, 5–21.

[43] Axel Van Lamsweerde, Robert Darimont, and Emmanuel Letier. 1998. Managing
conflicts in goal-driven requirements engineering. IEEE Transactions on Software
Engineering 24, 11 (1998), 908–926.

[44] DannyWeyns and Radu Calinescu. 2015. Tele Assistance: A Self-Adaptive Service-
Based System Exemplar. In Proceedings of the IEEE/ACM 10th International Sym-
posium on Software Engineering for Adaptive and Self-Managing Systems. IEEE,
88–92. https://doi.org/10.1109/SEAMS.2015.27

[45] Jon Whittle, Pete Sawyer, Nelly Bencomo, Betty HC Cheng, and Jean-Michel
Bruel. 2010. RELAX: a language to address uncertainty in self-adaptive systems
requirement. Requirements Engineering 15, 2 (2010), 177–196.

[46] Rebekka Wohlrab and David Garlan. 2021. A Negotiation Support System for
Defining Utility Functions for Multi-Stakeholder Self-Adaptive Systems. Require-
ments Engineering (2021).

https://doi.org/10.1145/1810295.1810329
https://doi.org/10.1145/3204459
https://doi.org/10.1145/1137677.1137679
https://doi.org/10.1109/WICSA.2014.18
https://doi.org/10.1109/SEAMS.2015.13
https://doi.org/10.1109/SEAMS.2015.13
https://doi.org/10.1109/TSE.1977.229904
https://doi.org/10.1109/TSE.1977.229904
https://doi.org/10.1109/ICCPS.2018.00014
https://doi.org/10.1109/RE.2010.21
https://doi.org/10.1145/3196478.3196488
https://doi.org/10.1109/SEAMS.2015.27

	Abstract
	1 Introduction
	2 Motivating Example
	3 Preliminaries
	4 Approach
	4.1 Quality Attribute Configurator
	4.2 Quality Attribute Adapter
	4.3 Model Creator
	4.4 Policy Synthesizer
	4.5 Reasoning Engine

	5 Preliminary Evaluation
	5.1 Evaluation Setup
	5.2 Evaluation Results

	6 Discussion and Research Outlook
	7 Related Work
	8 Conclusion
	References

