©2019 IEEE — Accepted to the 2019 IEEE International Conference on Software Architecture (ICSA’19), Technical Track

On Interfaces to Support Agile Architecting in Automotive:
An Exploratory Case Study

Rebekka Wohlrab*, Patrizio Pelliccione*¥, Eric Knauss*, Rogardt Heldal*$
*Chalmers | University of Gothenburg, Gothenburg, Sweden
TSystemite AB, Gothenburg, Sweden
iUniversity of L’Aquila, L’Aquila, Italy
8 Western Norway University of Applied Sciences, Bergen, Norway
Email: wohlrab@chalmers.se, patrizio.pelliccione@gu.se, eric.knauss@cse.gu.se, heldal@chalmers.se

Abstract—Practitioners struggle with creating and evolving
an architecture when developing complex and safety-critical
systems in large-scale agile contexts. A key issue is the trade-off
between upfront planning and flexibility to embrace change.
In particular, the coordination of interfaces is an important
challenge, as interfaces determine and regulate the exchange
of information between components, subsystems, and systems,
which are often developed by multiple teams. In a fast-changing
environment, boundary objects between teams can provide
the sufficient stability to align software or systems, while
maintaining a sufficient degree of autonomy. However, a better
understanding of interfaces as boundary objects is needed to
give practical guidance. This paper presents an exploratory
case study with an automotive OEM to identify characteristics
of different interfaces, from non-critical interfaces that can be
changed frequently and quickly, to those that are critical and
require more stability and a rigorous change process. We iden-
tify what dimensions impact how interfaces are changed, what
categories of interfaces exist along these dimensions, and how
categories of interfaces change over time. We conclude with
suggestions for practices to manage the different categories of
interfaces in large-scale agile development.

Keywords-large-scale agile development; agile architecture;
interfaces; boundary objects; case study; architectural change;
automotive; empirical software engineering

I. INTRODUCTION

The interaction of software and systems architecture with
agile development has received increased attention in the
last decades [1]. A core challenge with architecture in agile
development is to deal with the tension between upfront
architectural planning and agile development embracing
change [1], [2], [3]. Change is an important aspect, as the
rate of change impacts the adoption of the architecture-
agility combination [1]. In architecture-centric agile environ-
ments, developing the architecture in a lightweight way and
keeping the architecture flexible to change is challenging but
necessary, especially with respect to interfaces [4]. Interfaces
determine and regulate how two or more entities exchange
information. Oftentimes, the entities connected by an in-
terface are developed by different teams [S5]. It commonly
happens that blocking issues arise along interfaces among
agile teams, especially if they are ambiguously specified

or based on wrong assumptions [6]. To enable teams to
work in an agile way, “islands of stability” are needed [7],
which can be facilitated by the creation of boundary objects
that maintain a common identity [8], [9]. In this context,
better ways of “supporting the coordination of interfaces”
are required [9].

To address this issue, mechanisms are needed to under-
stand what architectural entities can be flexibly changed
and for which parts stability is needed, especially as the
complexity of systems grows [3]. Focusing on interfaces
as key architecture entities, this paper contributes to an
understanding of islands of stability in agile development,
which interfaces can or should be particularly stable, and
how they can be coordinated.

This paper presents an exploratory case study to analyze
categories of interfaces and dimensions influencing their
change in practice. We conducted a case study together with
an automotive OEM that aims to improve the agility of their
architecture practices. We present dimensions of interfaces,
categories of interfaces, and suggestions for industrial prac-
tices to manage interfaces in an agile development context.

Our research questions are as follows:

RQ1: What dimensions impact how interfaces in agile
automotive contexts are changed and how are the dimensions
related?

RQ2: What categories of interfaces exist in the context of
agile systems engineering with respect to the dimensions?
RQ3: To what degree does an interface’s category change
over time in agile automotive contexts?

To get a better understanding of the problem in our case
study, we conducted an initial literature review and four pre-
study meetings with architects at the case company. In order
to collect better insights and derive guidelines, we explored
the topic further using 12 semi-structured interviews with
stakeholders with different roles. Our findings indicate that
multiple dimensions impact how interfaces are changed, e.g.,
the number of affected components and the criticality. We
found three relevant categories along the identified dimen-
sions: (i) commodity interfaces, (ii) early stage interfaces,
and (iii) central vehicle interfaces. An interface’s category

can change over time, but typically becomes used in more
components, slower to change, and less frequently changed
the longer it exists. In the discussion, we provide suggestions
on how to manage interfaces. We propose to leave stable and
flexibly changeable interfaces up to the teams, but to control
change for central vehicle interfaces. For all categories, we
advise to establish interfaces to create boundaries that enable
independent development, set an interface’s abstraction level
as high as possible, and to assess interfaces early on.

The remainder of this paper is structured as follows: In
Section II, we describe related work. Section III introduces
the case company and Section IV presents the research
method. We present our findings related to the dimensions
of interfaces (Section V), related to categories of interfaces
(Section VI), and related to how categories change over time
(Section VII). In Section VIII, we conclude this paper with
a discussion of our findings and suggestions of practices to
manage interfaces.

II. RELATED WORK

The combination of architecture and agile development
has been studied from different angles [1], with several
reported challenges, practices, and lessons learned. There
is still a lack of guidance of using agile practices with
architecture, and the evolution and continuous change of an
architecture merit further research [10], [1]. In this paper, we
focus on how architecture is stabilized and changed, based
on influences of product, process, and people in a large-scale
agile context. Nord et al. [7] have identified the need for the
“creation of islands of stability in which teams can operate in
a mode that is closer to the agile sweet spot, and possibly
at a faster iteration rhythm.” At the same time, one aims
to enable teams to respond to change quickly and capture
aspects of emergent architecture [3].

This paper relates to the allocation viewtype at it is
concerned with how tasks are assigned to groups in the
development organization and influence both process and
people aspects [11]. Concretely, this paper deals with in-
terfaces, which are natural boundaries between agile teams
developing parts of a software or system. An interface “is
a form of relation between two or more distinct entities
[...] such that it [...] selectively allows a transmission or
communication of force or information from one entity to
the other” [12]. An alternative definition is that an “interface
is a boundary across which two independent entities meet
and interact or communicate with each other” [11]. The
notion of interface change and evolution has already been
included in early works on interfaces [13], pointing to the
need of leaving room for future expansion and considering
design decisions that are likely to change in the future.

Interfaces capture the relation of a providing entity to a
consuming entity and ideally, both are considered during the
establishment and maintenance of the interface. In this study,
we focus on how they are changed, from their creation until

an eventual deprecation or removal. In the context of APIs,
the focus often lies on the side providing interfaces that
are used downstream [14]. The consuming entities are not
necessarily known; instead, the focus lies on attracting more
potential users of the interface as a business strategy. While
APIs are mostly written for developers using the interfaces,
interfaces in general can have stakeholders of several roles
and can be documented using several notations [15].

IIT. CASE COMPANY

The case company is an automotive OEM located in
Sweden. The company has had a focus on agile architecture
for more than four years. The SAFe framework [6] is
used widely in research and development areas across the
company, across around 50 release trains with approximately
500 teams in total. Large parts of the architecture work
have been moved from centralized teams of architects to
the release trains and solution trains. Architects operate
as a shared service in the organization. Moreover, local
train architects take care of the architecture developed in
particular release trains.

Parts of our interviewees work on the core system plat-
form, representing a new, centralized vehicle architecture.
The idea is that the vehicle architecture is not based on
hundreds of Engine Control Units (ECUs) communicating
with each other, but that a central platform is used, taking
care of the communication to other ECUs via a device proxy.
The core system platform is currently still under develop-
ment. It will contain the most critical parts of the software,
will facilitate continuous integration and deployment, and be
controlled by the OEM. Microservices on a high level are
used to increase decoupling between hardware and software
components. An example is a microservice sending out
information about the vehicle speed and it can be processed
by hundreds of applications for a variety of purposes.

IV. RESEARCH METHOD

As our research questions are mainly of exploratory
nature, we opted for an exploratory case study [16].

A. Study Design and Planning

We conducted an initial informal literature review about
interfaces in software and systems architecture to understand
the state of the art. Additionally, we conducted 2 pre-study
workshops with 5 researchers and 2 architects, additionally 2
meetings on-site at our case company. We exploited the pre-
study to understand challenges and practices and developed
the initial hypothesis. Based on this understanding, we
conducted 12 semi-structured interviews to analyze types
of interfaces and characteristics influencing how they are
managed. We created an interview guide' with open-ended
and closed questions. After questions about the background,
the guide included a presentation of our initial hypothesis

Uhttps://tinyurl.com/interface-interview- guide

Table I

OVERVIEW OF THE PARTICIPANTS OF OUR CASE STUDY

No. Role

Experience with
systems/software
engineering
(experience in
automotive)

Area of Expertise

Senior Software
Engineer

11 yrs. (4.5 yrs.)

Central Electronic
Module

2 Senior System >20 yrs. (10 yrs.) Hybrid Control
Design Engineer System
3 Principle Engineer 13 yrs. (13 yrs.) Active Safety and

Driver Support
Technologies
Active Safety

4 System Design 4 yrs. (4 yrs.)

Engineer
5 System 11 yrs. (11 yrs.) Driver Interaction
Responsible and Infotainment
6 Senior Service 20 yrs. (20 yrs.) Connected Car IT
Architect Services
7 System 13 yrs. (13 yrs.) Security Body
Responsible Electronics
8 Technical Lead 20 yrs. (<1 yr.) Application API
9 System Architect 18 yrs. (>1 yr.) Core System
Platform
10 Technical Lead 17 yrs. (<1 yr.) Core System
Platform
11 Software Dev. & 16 yrs. (1 yr.) Core System
Tech Lead Platform
12 Software 7.5 yrs. (<1 yr) Core System
Developer Platform

that there might be different dimensions impacting interface
change. Participants were asked to name examples of inter-
faces that they work with and characterize them.

B. Selection Criteria and Participants

After the pre-study, we selected 12 participants at two
locations of the case company. We selected individuals
from different departments, working with several mod-
ules/components. The participants should be knowledgeable
in software or systems architecture and have different roles
(e.g., developers, architects, testers).

An overview of our participants with their roles and areas
can be seen in Table I. Besides indicating their experience
with systems/software engineering, we also show the expe-
rience in the automotive domain.

C. Data Collection and Analysis

The lengths of the interviews were between 20 minutes
and 46 minutes, with an average of 35 minutes. After-
wards, the interviewing researcher created transcripts of the
interviews. We adapted Creswell’s analysis approach for
qualitative data to our needs [17]. We coded the interviews
with an open coding approach and arrived at an initial set
of 101 codes. We conducted an initial coding workshop to
discuss the relations between codes after 7 interviews. We
merged codes that represented the same notion and arrived
at 52 codes. After performing the remaining interviews,

we extended the codes by 9 additional ones. With respect
to the dimensions and categories, we coded all mentioned
examples as sub-codes under the codes “dimension” and
“category.” We arrived at the final set of categories by
grouping mentioned examples of interfaces based on similar
values of the dimensions. Based on the coded data, 27
examples of interfaces were given by the participants in
varying levels of detail. In the interviews, we aimed to
encourage participants to be as concrete as possible. We used
all of the named interfaces as the basis to derive dimensions
and categories. Finally, we decided how to present the
findings using graphs, tables, and text.
We take this statement to explain our coding method:

“Internally we can change quite quickly. For safety
and legal parts, it’s costly validations. That’s why we
don’t want to change a lot.”

This quote was coded with “standards and regulations”
(to cover safety aspects), “testing” (as it is related to valida-
tions), “organizational boundaries” (as there is a difference
between internal and external processes/interfaces), “speed
of making changes”, and “flexibility.” The coding also al-
lowed us to identify connections between important aspects
more easily later on.

D. Threats to Validity

Our case study faces the following threats [18]:

There is a risk that we mis-heard or mis-transcribed inter-
viewees’ words. To mitigate threats to descriptive validity,
we created transcripts that allowed us to conduct an exact
analysis of what was said in the interviews.

To reduce threats to interpretive validity, we presented
the study’s context at the beginning of the interviews. We
paraphrased interviewees’ statements and used their own
terminology to ensure correct understanding.

Theoretical validity is related to beliefs and conceptions
we had prior to the study. We thoroughly discussed the data
to ensure a chain of evidence. We aimed to present our
method and reasoning in a transparent way.

Generalizability is about how applicable our findings are
in other contexts. The goal of our exploratory study was to
understand the concrete context of the case company. The
categories we identified are based on examples of interfaces
mentioned by individuals. We used data triangulation of
interview data from several interviewees with different roles
to strengthen internal generalizability. To be transparent
about our particular case, we described the characteristics
of the case company and participants. The participants
in this study had at least four years of experience with
systems/software engineering. The experience in automotive
is shown in parentheses in Table 1. While the automotive
domain comes with particular challenges (not pure software
development, high criticality, diversity of functions, etc.), the
findings are not specific to automotive systems and are likely
valuable also in other large-scale agile contexts.

. broader applicabilit

II.A Level of abstraction Be Y
esS

red'\ctab\e chené

o0 U0 avoid changes through workarounds

111.B Criticality (safety, security) analysis and certification

distributed development

III.C Distance to affected parties
of components

Figure 1.

I11.H Stability

111.D Time to perform a change

adaptation effort
per component

III.LE Number of affected components

less f t ch . .
E5s Ireu e e ILF Maturity of affected functions

less
freqUent cha
Nges

1I.G Position in the interface’s lifecycle

© %

O S

,\ée‘ 2 6‘5@&6

W ,‘\(\’\-
o Legend:
<<typically implies>>

directly proportional to

Dimensions of interfaces and their relations. X «typically implies» Y means that an increase in X typically implies an increase in Y, which

can be due to direct conceptual relations between dimensions or because of actions performed by stakeholders.

Threats to evaluative validity exist as researchers poten-
tially present findings in a judgmental way, based on their
own values and understanding. By collecting feedback from
fellow researchers on our interpretations and the presentation
of our findings, we tried to mitigate this threat. One should
note that the goal of this research was rather to explore the
topic of interfaces in agile automotive contexts, rather than
evaluating a method.

V. DIMENSIONS OF INTERFACES

We identified several dimensions of interfaces and rela-
tionships between them. We consider dimensions as measur-
able characteristics of interfaces and how they are changed.
In this section, we answer RQ1: What dimensions impact
how interfaces in agile automotive contexts are changed and
how are the dimensions related?

An overview of our findings is displayed in Figure 1. The
arrows represent implications between dimensions and the
dimensions are directly proportional to each other, i.e. the
higher one dimension, the higher the other. This increase
can be due to the direct conceptual relations between the
dimensions (e.g., a higher criticality implies a longer time to
perform a change because of additional overhead) or because
of decisions taken or actions performed by stakeholders
(e.g., if the time to perform a change is high, typically an
interface is kept more stable by architecture stakeholders to
reduce the overhead of changing it). The text on the arrows
indicates the core motivator behind the relations.

The level of abstraction refers to the nature of an interface
and how closely related to hardware it is. The criticality
relates to safety and security criticality. The distance to
affected parties relates to the distance between people (e.g.,
geographical, organizational, or cognitive distance), related
to artifacts (e.g., semantic distance), and related to activi-
ties (e.g., temporal distance) [19]. The time to perform a
change relates to the time it takes to plan and implement a
change. The number of affected components relates to how
many logical, software, or hardware components need to be
adapted because of a change.

In the automotive domain, functions of different natures

exist that are more or less established. We found that the
maturity of the affected functions of an interface is relevant.
Another dimension is the interface’s position in the lifecycle.
As any artifact, an interface has a lifecycle from its creation
to its first use to its maintenance, its potential deprecation,
and removal. Finally, the stability of an interface indicates
how steady it is over time.

We describe each dimension in the following, together
with its outgoing relations shown in Figure 1. Each dimen-
sion is marked with its subsection’s letter.

A. Level of Abstraction

Interfaces at our case company were typically signals
and communication interfaces between ECUs, interfaces
between software components, or application programming
interfaces (APIs) on a higher level of abstraction.

Signals and interfaces between ECUs are managed in a
signal database. The intention with hardware-related inter-
faces is to stabilize them early on, as stressed by Intervie-
wee 7. However, currently, the signal database is constantly
changed. Change requests come with an overhead as a signal
database team needs to approve and perform the changes.

Interfaces on a software level (e.g., APIs) are intended to
be reusable over time and make the company less dependent
on the implementation (e.g., provided by suppliers). Several
interviewees reported that changing an API on a high level
of abstraction should be avoided.

“With APIs, it’s difficult to change or remove things,
it’s easy to add. If you think ‘this is good for now, we
will see later if it will change,’ that will be problem-

atic.” (Interviewee 12)

We identified that a higher level of abstraction typically
implies a higher level of stability. This is mainly motivated
by the broader applicability of a high-level interface. In-
terfaces on a high level of abstraction, e.g., APIs, can be
generic to be usable for different applications and have the
potential to be stable. Interviewee 10 stated that “the more
we abstract from unnecessary details, the more stable our
interfaces can be.”

B. Criticality

Eight of our interviewees pointed out that criticality is
an important factor that requires to keep interfaces stable.
Interviewee 2 reported that “since we have safety-critical
functions in the car, we need to have stable interfaces”,
and Interviewee 1 stated that “costly validations” need to
be performed when changing safety-critical interfaces. A
core motivator for the stability of safety-critical interfaces is
the need to do the certification and security/safety analysis
again. These additional steps increase the time to perform a
change. Additionally, practitioners are afraid that a change
could have unpredictable consequences, which is why they
prefer to have stable interfaces. For this reason, a higher
level of criticality typically implies more stability.

C. Distance to Affected Parties

This dimension relates to the distance between human
stakeholders, semantic distance, and the distance between
activities [19]. Organizational distance is relevant both
within the same company and to suppliers or other com-
panies. Another relevant aspect is whether involved teams
have the mandate to prioritize tasks in a common way.
Interviewee 3 stated that “it’s tougher to change interfaces
[...] when you are affecting teams and components outside
of your scope where you don’t have control.”

All interviewees mentioned that performing a change
takes more time if several (distributed) teams are affected by
a change. The more stakeholders are affected by a change,
the higher will be the coordination overhead.

Interviewee 9 stated that if only two teams are affected,
resolution of changes is bilateral, independent, and quick.

“Sometimes it’s just two teams, then they talk. Then
one team takes over the concern and discusses it with
the other one. And [the architects] give directions.”

(Interviewee 9)

D. Time to Perform a Change

Our interviewees mentioned that the speed of implement-
ing a change also impacts how often a change can be made
and how stable an interface is required to be kept. It clearly
depends on the type of interface how long a change takes,
but can be up to half a year (Interviewee 12). Because of
these constraints, engineers sometimes try to come up with
workarounds to avoid making a change. As time is related
to cost, several interviewees see it as desirable to reduce the
time to perform a change and increase the stability.

“You want to be able to change the API fast. If you
have a slow process, then you get problems in agile

because the teams get blocked.” (Interviewee 10)

To foster efficient development, practitioners try to keep
these interfaces as stable as possible.

E. Number of Affected Components

The number of affected components relates to how many
parts of the system need to be adjusted because of a change.
Several interviewees pointed out that the number of affected
components or subsystems by an interface change strongly
increases the time a change takes, because of the adaptation
effort per component. Interviewee 4 stated that “[the time
to change an interface] depends on the change, how many
subsystems are affected and what actions need to be taken.”
It is common that these components are also managed by
different teams across a distributed organization: a high
number of affected components typically implies higher
distance to affected parties.

F. Maturity of Affected Functions

A variety of functions are developed in automotive com-
panies, e.g., infotainment, powertrain, or autonomous driving
functions. We found that the maturity of affected functions
has a strong impact on the stability of their interfaces, due
to less frequent changes occurring for these functions. For
instance, Interviewee 2, working with the hybrid control
system in the powertrain department, stated that they “mainly
have stable interfaces overall.” On the other hand, Intervie-
wees 8—12, working within new functions, stated that the
frequency of change is very high and the interfaces are very
unstable.

“We have different parts and different features of
the car with different maturity periods. Today a lot of
functionality is quite mature. [...] So we don’t need to
change those interfaces. Those are related to traditional
car functions. The commodity functionality, what the

customer expects.” (Interviewee 1)

Several interviewees stated that the surrounding layers of
functionality impact the number of interface changes:

“After some time, when the layers that are using
your interface are not really subject to change, then

you see that it is stable.” (Interviewee 10)

All interviewees stated developing new, immature func-
tionality, the frequency of change is higher.

“In the early phases, it is more unclear and tech-
nology decisions will change a lot. While in the end,
it’s just nuances of which [interfaces] to change and

how often.” (Interviewee 5)

G. Position in the Interface’s Lifecycle

An interface can be at different points in its lifecycle,
from its creation to its deprecation or removal. The later it
is in its lifecycle, the more stable it becomes. Interviewee 11
stated that an interface undergoes “many changes [at first],
then some rework, and then hopefully it will stabilize over
time.” Interviewees 6 and 7 stated that the period of change
is typically two to three years. Then, the stability increases
due to less frequent changes.

Abstraction

Criticality Distance _ VI.LA Commodity

interfaces

_ VLB Early stage
interfaces

Position in Number of .
interface's = affected . VI.CCentral vehicle
lifecycle ! components interfaces
: Span of interfaces
Maturity of Time to inVI.C
affected °~ = perform a
h High .~ =
functions - P change
-~
Stability
Figure 2. Categories of interfaces with their dimensions

Our interviewees pointed out that the longer an interface
exists, the more components are likely to use it and rely on
it. An interface gets more widely adopted with time. As a
consequence, the time of making changes and the stability
as a whole increase.

“Before everyone else uses it, [...] update it daily,
every hour, I don’t care. But when you work with people
who use the API, you need handshakes between the

provider and users.” (Interviewee 10)

Interviewee 4 noted that when an interface is included in
production vehicles’ software, it takes even more time to
change it.

H. Stability

Many of the mentioned dimensions impact the stability
of interfaces. Stability is understood as the opposite of the
frequency of change. The stability of an interface can be a
consequence of the development context or actively enforced
by stakeholders. Our interviewees use different formulations
to talk about stability. It can be observations of changes,
e.g., “it becomes rather stable” (Interviewee 6). However,
practitioners also intervene as there is a “need to stabilize
[an interface]” (Interviewee 9). Interviewee 2 stressed that
“we want to have stable interfaces, then we can make our
own internal development.” Interviewee 5 pointed out that
there exist interfaces that are naturally stable (e.g., because
the affected components do hardly ever change), as well as
interfaces that are kept stable in an artificial way (“because
[the process to change] is so rigid” or because suppliers are
involved).

VI. CATEGORIES OF INTERFACES

This section answers RQ2: What categories of interfaces
exist in the context of agile systems engineering with respect
to the dimensions?

We used the interview data to scrutinize examples of
interfaces and arrived at the following categories: (i) com-
modity interfaces, related to mature functions, (ii) early
stage interfaces, used in few components and being changed
quickly and often, and (iii) central vehicle interfaces, which

are very critical interfaces that are used across a large
distance and affect many components.

Interfaces can be at different positions in their lifecycle
and all dimensions can change over time. According to
our findings, one interface can only belong to one of these
categories, although it can change its category with time.

Table II depicts the categories with their dimensions, as
well as main concerns with each of the categories. The
categories with their dimensions are shown in Figure 2 as a
radar chart. The dimensions are shown along the axes, with
“Low”, “Medium”, and “High” as the dimension values.
The dashed gray line indicates the values for commodity
interfaces (Section VI-A), the black solid line for early
stage interfaces (Section VI-B), and the gray solid line for
central vehicle interfaces (Section VI-C). The category of
central vehicle interfaces consists of interfaces with slightly
different characteristics. The gray area in the figure indi-
cates the span of central vehicle interfaces. Central vehicle
interfaces vary along the lifecycle, abstraction, maturity, and
stability axes. The position in the lifecycle varies naturally
as time passes. While the abstraction and maturity impact
the (potential) stability of an interface, the main influencing
property of central vehicle interfaces is its centrality, as many
components are affected. We describe subcategories within
this category, but group them as central vehicle interfaces.

The time to perform a change in the identified categories
is either Low or High. The values are based on the gathered
data and perceptions of interviewees. Future work is needed
to accurately measure the time to perform a change for
different interface types.

A. Commodity Interfaces

Commodity interfaces relate to very mature functions that
have been developed and used for several years. Intervie-
wee 7 mentioned signals for the headlamps technology on
a rather low level of abstraction. An interface needed to
be adjusted due to minor changes in the technology, but
implementing the change took a high time effort. Intervie-
wee 7 stated that the stability is high now, and that the
interface affected a medium number of components and
only organizational units across a manageable distance. The
criticality of the interface is neither particularly high nor
low, but undergoes the same procedures as typical vehicle
interfaces.

Interviewee 2 named interfaces for gearbox types as an
example of a commodity interface that had to be adjusted
because a new gearbox type was introduced. The team
has a strong focus on actuators and controllers for them,
on a rather low level of abstraction. Only groups inside
the same department are affected by the change, across a
medium distance. They develop 3-4 nodes, i.e., a medium
number of affected components. The interface is stable now,
as Interviewee 2 mentioned: “We came up with a common
interface that could take care of both gearbox types. Like a

Table 11
OVERVIEW OF INTERFACE CATEGORIES AND THEIR DIMENSIONS

Abstrac- Distance Number Maturity Position in Critica- Time to Stability =~ Main concerns
tion of com- of interface’s lity change
ponents functions lifecycle
VI-A: Commodity Low Medium Medium High Medium Medium Long High Prioritization of
interface changes
VI-B: Early stage Medium Low Low Low Early Low Short Low Rework due to lack
of stability
VI-C: Central vehicle Medium High High Low Medium High Long Medium Lack of
VI-C1: Critical Medium High High Medium Late High Long Medium ?rflx;bclthg;’ high
cross-company ch'fn .
VI-C2: Service API High High High Low Early High Long Low &
VI-C3: Infotainment Low High High Low Medium High Long Medium

head unit

super interface. That made it quite stable. And we strive for
stable interfaces.” However, it took a year of simulations to
assess the consequences of the change and establish it (i.e., a
long time to perform a change). Our interviewees stated that
differently prioritized backlogs are an issue when performing
a change.

“We always struggle with having the resources and
prioritizing it the same way. We can’t get resources to
do the work we find most challenging.”

(Interviewee 2)
B. Early Stage Interfaces

Early stage interfaces are fundamentally different from
commodity interfaces. Interviewee 8 mentioned an interface
between two components: the vehicle interface unit that is
connected to an ECU, and the core platform itself. It is on a
medium level of abstraction, neither on a high API or service
level, nor on a signal level. Interviewee 8 stated that only
two teams are affected who sit in the same building: “They
can do whatever they want. [...] Because they own both the
software running here and the software that receives the
data.”

The time to perform changes is short, as the teams can
change interfaces “without disturbing anyone else” (Inter-
viewee 8). The criticality is considered low in the current
development context, although our interviewees mentioned
the need to consider criticality in the future. The stability
is currently low, as many decisions are being explored and
changed. Our interviewees stated that higher stability would
be beneficial.

“We need more upfront work, it’s too little right
now. [...] The penalty is that they need to rework

sometimes. (Interviewee 9)

C. Central Vehicle Interfaces

Central vehicle interfaces connect a high number of criti-
cal components developed across large distances, and take a
long time to change. The main concern with central vehicle

interfaces is the lack of flexibility and the high impact of
change. Due to the high distance and the high criticality,
changes have to be performed in a very controlled way.
To increase the interfaces’ stability, the trend is to increase
the level of abstraction and support a larger number of
applications of the interface. However, Interviewee 6 pointed
out that the interfaces still “need to be revised all the time
because the different teams [...] find a lot of details that
nobody thought about.”

We found three subcategories that we describe in the
following: critical Cross-company interfaces, a service API,
and infotainment head unit interfaces.

1) Critical Cross-Company Interfaces: Interviewee 6
mentioned interfaces related to connectivity, both inside of
our case company, but also to other organizations. The
distance is high: 17 architects are involved in-house to
manage these interfaces, plus additional ones from other
companies. Due to the large number of stakeholders, the
time to agree on and perform changes is long. The number
of affected components is high, which is why the intention
is to keep the interfaces as abstract as possible, so that they
can be used for different purposes and applications. The
interfaces are highly critical, both as they provide safety
features and because of security and privacy constraints.
The stability is on a medium level, but typically increases
over time: “Usually, in the first three years it changes a
lot and then it becomes rather stable.” The interface is at
a late position in its lifecycle, with only 6 months before
production. The affected functions are on a medium level of
maturity, i.e., neither very early nor very established.

Interfaces are especially complicated if they are used to
exchange data with externals:

“For interfaces to other companies, you try to keep
them as minimal as possible. [...] We try to focus not
only on the technical interfaces, but more on the data
structure as such. So that we are not bound to a certain
technology, it’s still changing so fast.”

(Interviewee 6)

2) Service API: A service API has been mentioned by In-
terviewees 8—12 and represents interfaces to microservices.
Software service interfaces are on a high level of abstraction.
Interviewee 10 pointed out that they are security-critical, as
“not everyone should have access to all signals.” Intervie-
wee 8 mentioned that some interfaces affect a high number
of components: “If we make one change, maybe we need to
change 100 applications”.

There is a large distance to affected parties, both be-
cause of different backgrounds and different geolocations.
According to Interviewee 8, the time to perform a change
is high, due to a high overhead of interface governance.
So far, the maturity of affected functions is very low. Also
the position in the interface’s lifecycle is in its definition
phase. Interviewee 12 stated that eventually, it will become
very hard to change and to remove interfaces in the APIL.
It “should be really stable” (Interviewee 8), because of the
large impact on other teams. Currently, however, it has a
low level of stability.

3) Infotainment Head Unit Interfaces: Interviewee 5
mentioned interfaces to and from the central head unit within
infotainment. These interfaces allow users to activate and
use functions in the car. It has a high number of affected
components and also affects different departments across
large distances.

Interfaces are often on a signal level (i.e., low level of
abstraction). The criticality is high, and certain signals need
to be prioritized more than others, as Interviewee 5 stated:
“We can delay features like a shuffle function. But warnings
for the safety system are more important, for instance.”
Changing the database takes a long time, as all changes are
performed by a signal database team. It is a concern, as “it’s
not really scalable if you want to change your system rather
often” (Interviewee 4).

The maturity of affected functions is low, as infotainment
needs to adapt quickly to market trends. The interfaces’
position in the lifecycle is currently under development,
but has passed the initial definition phase. The stability is
currently on a medium level, but the interfaces still undergo
change.

VII. CHANGE OF CATEGORIES OVER TIME

This section answers RQ3: To what degree does an
interface’s category change over time in agile automotive
contexts?

Our overall observation is that an interface’s category
can change over time, but typically the values of the di-
mensions increase rather than decrease. The position in the
interface’s lifecycle inevitably changes over time and moves
from “Early” to “Late.” Our interviewees named interfaces
across all lifecycle positions. An increase in the position
in the interface’s lifecycle affects three other dimensions
(Section V-G): More components are affected, more time
is needed to perform a change, and stability is increased.

Early stage interface, in particular, change values in
several dimensions:

“At one point in time, you should try to be careful
with interface changes. [...] We have a year of a lot of
changes, but then we want a release so that others can

rely on this.” (Interviewee 9)

Commodity interfaces are already at a stable level and our
interviewees did not expect their dimensions to change,
except if new, immature functions affect the interface. In-
terviewee 2 reported that interface changes are motivated
by “new technology or new functions that put requirements
on us.”

For the central vehicle interfaces, the criticality and dis-
tance complicate change. Several interviewees mentioned a
“point of increased stability” that will be reached with an
increasing use of the interfaces. Interviewee 12 motivated
this as follows: “Once it comes to a point where people will
use it, other people, other groups, then it won’t be easy to
change it anymore”.

The goal is to aim for stability in certain time periods:

“We don’t change constantly but have a heartbeat.
So that the API should stay as stable as possible

between two points in time.” (Interviewee 10)

The interviewee recommended to keep the API stable
and continue the development on a separate branch that is
merged later on. Interviewee 10’s idea is to start with “one
or two users at the beginning. [...] With a small set of users,
it is easier to get the standard in place.”.

VIII. DISCUSSION AND CONCLUSION

This paper describes dimensions of interfaces that impact
change, categories along the dimensions, and an analysis of
how these categories change over time.

We conclude that interfaces play a central role for the
architecture, especially when developing multiple compo-
nents that exchange information. Related work confirms that
challenges with agile development are to foster information
exchange across teams and to deal with distance between
teams [19], [20], [21]. Our findings indicate that practitioners
aim for stable interfaces to enable flexible and indepen-
dent development inside agile teams [7]. In this context,
architecture models and descriptions have been considered
boundary objects [9], [8], i.e., artifacts establishing a com-
mon understanding across sites, while allowing each of the
teams to maintain its interpretation of the object [22]. Our
understanding is that interfaces as an integral part of the
architecture can also be considered boundary objects be-
tween teams developing different parts of the system. Teams
interpret them from different angles, based on the concerns
of the component they are currently working on. Architects
have a broader scope and work with interface or architecture
descriptions to communicate with several teams [15]. The
findings presented in this paper help to understand the

Table IIT
SUGGESTIONS FOR PRACTICES AND RELATIONS TO DIMENSIONS

Practice Dimensions
1 Select what interfaces need to be managed cen- Time,

trally, and leave other interfaces (especially those position

in an early stage) up to the teams. in lifecycle
2 As soon as the lack of stability impedes that teams Stability

can work autonomously, involve stakeholders with
architecture expertise to establish interfaces that set
the boundaries.

3 Increase an interface’s level of abstraction if you
have the flexibility, so that you can support more
users.

4 Assess interfaces in the early stages with one or Position
two users before its position in the lifecycle and in lifecycle,

Abstraction

stability increase. stability
5 For central vehicle interfaces, establish controlled Number of
change mechanisms and a strategy for versioning. components,
stability

different dimensions relevant for managing interface change
and assessing these boundary objects’ relevance and usage
over time [8].

Based on the mentioned examples in the study, we identi-
fied three categories of interfaces with respect to dimensions
and main concerns:

o Commodity interfaces, related to mature functions.
They only affect teams across a manageable distance,
but changes take time to prioritize, assess, and agree
upon.

o Early stage interfaces are in an exploration phase and
can be changed flexibly, although too frequent changes
result in undesired rework.

o Central vehicle interfaces, that play a role for many
architectural entities. They are more difficult to manage
than the former two categories, being very critical and
affecting many components and teams.

Table III shows suggestions for practices that we deduced
based on the findings and how they relate to the dimensions.
The practices are based on our interviewees’ experiences,
their suggestions, and reasoning based on the collected data.
In the following, we motivate the suggestions based on a re-
elaboration of our findings.

First practice: Select what interfaces need to be managed
centrally, and leave other interfaces (especially those in an
early stage) up to the teams. Currently, the tendency at our
case company is to control interfaces from a central point,
involving architects or the signal database team. This results
in a large overhead of managing interfaces and long times
to perform a change. To be scalable and competitive in the
future, a more lightweight approach can be beneficial to
manage early stage interfaces impacting only a few teams.
Interviewee 8 mentioned that should be “up to the teams to
decide [on these interfaces].”

Second practice: As soon as the lack of stability impedes
that teams can work autonomously, involve stakeholders

with architecture expertise to establish interfaces that set
the boundaries. Several interviewees suggested that if an
interface concerns only one or two teams, they can agree on
changes themselves, keeping the architects in the loop. The
suggestion is also confirmed by related work [6]. As lack of
stability often results in rework (Section VI-B), boundaries
as “islands of stability” [7] need to be set.

Third practice: Increase an interface’s level of abstrac-
tion if you have the flexibility, so that you can support more
users. More general and abstract interfaces often lead to
higher stability [13]. In the case of interfaces for gearbox
types, a more abstract “super interface” was created to ac-
commodate two types of gearbox interfaces (Section VI-A).
A similar observation was made in the cases of central
vehicle interfaces and the abstraction from details.

Fourth practice: Assess interfaces in the early stages with
one or two users before its position in the lifecycle and
stability increase. When examining the change of categories
over time (Section VII), we found that flexible interfaces
likely reach a point where change becomes more compli-
cated. Our interviewees’ idea was to leverage the freedom
in initial phases and assess interfaces with a few users before
more stability is required.

Fifth practice: For central vehicle interfaces, establish
controlled change mechanisms and a strategy for versioning.
Central vehicle interfaces that have become used by many
components should be carefully changed (Section VI-C).
Also in agile setups, stability is needed to enable teams’
autonomy, as confirmed by [7].

To conclude, the study presented in this paper contributes
to an understanding of architectural change in agile contexts.
The described dimensions of interfaces and their relations
can help to understand characteristics of interfaces and how
they can be managed in agile development. While certain
categories can be managed in a very flexible way, other cat-
egories of interfaces should be stabilized for agile teams to
work effectively. The presented categorization showed that
the dimensions are useful to describe differences between
interfaces. We observed that over time, dimensions rather
increase than decrease.

It should be noted that the extracted categories are based
on an initial exploratory case study and that more research
is needed to systematically examine categories of interfaces.
We expect that there are more general categories of inter-
faces that are not specific to the automotive domain.

Practitioners can understand dimensions and categories of
interfaces to reflect on how interfaces can be established
as “islands of stability” to enable agile teams to flexibly
develop systems and software [7]. Our findings suggest that
interfaces with different characteristics require different ap-
proaches to managing change. The suggestions for practices
can help as a starting point to create and change interfaces
that allow as much stability as needed.

The study was conducted in the automotive domain,

characterized by very diverse functions, criticality, slow pro-
cesses for non-software parts, and large distances between
stakeholders. We expect these findings to be valuable also
for other companies and industries, but further research is
needed. Based on this study and the suggested practices,
researchers can assess interfaces in other companies and
domains, and develop tools and methods to support interface
change in agile environments.

ACKNOWLEDGMENTS

We would like to thank all anonymous participants and
facilitators for the time and effort in supporting this study.
Moreover, this study was supported by the Vinnova projects
NGEA and NGEA step 2, the Software Center Project
#27 (software-center.se), and the Wallenberg Al, Autonomous
Systems and Software Program (WASP) funded by the Knut
and Alice Wallenberg Foundation.

REFERENCES

[1] C. Yang, P. Liang, and P. Avgeriou, “A systematic mapping
study on the combination of software architecture and agile
development,” Journal of Systems and Software, vol. 111, pp.
157 — 184, 2016.

[2] P.Pelliccione, E. Knauss, R. Heldal, S. M. Agren, P. Mallozzi,
A. Alminger, and D. Borgentun, “Automotive architecture
framework: The experience of Volvo Cars,” Journal of Sys-
tems Architecture, vol. 77, pp. 83 — 100, 2017.

[3] M. Waterman, J. Noble, and G. Allan, “How much up-front?
a grounded theory of agile architecture,” in Proceedings of
the International Conference on Software Engineering (ICSE
’15), 2015, pp. 347-357.

[4] K. Read and F. Maurer, “Issues in scaling agile using an
architecture-centric approach: A tool-based solution,” in Pro-
ceedings of the 3rd XP Agile Universe Conference, 2003, pp.
142-150.

[5] K. Rahmani and V. Thomson, “Managing subsystem inter-
faces of complex products,” International Journal of Product
Lifecycle Management, vol. 5, no. 1, p. 73, 2011.

[6] D. Leffingwell, Scaling Software Agility: Best Practices for
Large Enterprises (The Agile Software Development Series).
Addison-Wesley Professional, 2007.

[7] R. L. Nord, I. Ozkaya, and P. Kruchten, “Agile in distress:
Architecture to the rescue,” in Proceedings of the 15th In-
ternational Conference on Agile Software Development (XP
2014). Springer International Publishing, 2014, pp. 43-57.

[8] R. Wohlrab, P. Pelliccione, E. Knauss, and M. Larsson,
“Boundary objects in agile practices: Continuous management
of systems engineering artifacts in the automotive domain,”
in Proceedings of the 2018 International Conference on
Software and System Process (ICSSP ’18). ACM, 2018,
pp. 31-40.

[9] L. Pareto, P. Eriksson, and S. Ehnebom, “Architectural de-
scriptions as boundary objects,” in Proceedings of the 13th
International Conference on Model Driven Engineering Lan-
guages and Systems (MODELS 2010), 2010, pp. 406—419.

[10] T. Dingsgyr, N. B. Moe, T. E. Faegri, and E. A. Seim,
“Exploring software development at the very large-scale: a
revelatory case study and research agenda for agile method
adaptation,” Empirical Software Engineering, vol. 23, no. 1,
pp- 490-520, Feb 2018.

[11] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers,
R. Little, R. Nord, and J. Stafford, Documenting Software
Architectures: Views and Beyond, ser. SEI series in software
engineering. Pearson Education, 2003.

[12] B. Hookway, Interface, ser. Cultural studies.
2014.

MIT Press,

[13] D. Hoffman, “On criteria for module interfaces,” IEEE Trans-
actions on Software Engineering, vol. 16, no. 5, pp. 537-542,
May 1990.

[14] J. Lindman, J. Horkoff, I. Hammouda, and E. Knauss,
“Emerging perspectives of API strategy,” IEEE Software, pp.
1-1, 2018.

[15] F. Bachmann, L. Bass, P. Clements, D. Garlan, J. Ivers,
R. Little, R. Nord, and J. Stafford, “Documenting software
architecture: Documenting interfaces,” CarnegieMellon Soft-
ware Engineering Institute, Tech. Rep., 2002.

[16] P. Runeson and M. Host, “Guidelines for conducting and
reporting case study research in software engineering,” Em-
pirical Software Engineering, vol. 14, no. 2, p. 131, Dec 2008.

[17] J. W. Creswell, Research Design: Qualitative, Quantitative,
and Mixed Methods Approaches, 3rd ed. Sage Publications
Ltd., 2008.

[18] J. Maxwell, “Understanding and validity in qualitative re-
search,” Harvard Educational Review, vol. 62, no. 3, pp. 279—
301, 1992.

[19] E. Bjarnason and H. Sharp, “The role of distances in require-
ments communication: a case study,” Requirements Engineer-
ing, vol. 22, no. 1, pp. 1-26, Mar 2017.

[20] K. Petersen and C. Wohlin, “The effect of moving from a
plan-driven to an incremental software development approach
with agile practices: An industrial case study,” Empirical
Software Engineering, vol. 15, no. 6, pp. 654—-693, 2010.

[21] M. Hummel, C. Rosenkranz, and R. Holten, “The role of
communication in agile systems development: An analysis
of the state of the art,” Business and Information Systems
Engineering, vol. 5, no. 5, pp. 343-355, 2013.

[22] S. L. Star and J. R. Griesemer, “Institutional ecology, ‘trans-
lations’ and boundary objects: Amateurs and professionals in
Berkeley’s museum of vertebrate zoology, 1907-39,” Social
Studies of Science, vol. 19, no. 3, pp. 387420, 1989.

