Accepted to the 50th Euromicro Conference Series on Software Engineering and Advanced Applications (SEAA’24). |

Not All Contflicts Are the Same: An Empirical
Study of Requirement Conflicts in Practice

Antonia Welzel
Dept. of Computer Science and Eng.
Chalmers | University of Gothenburg
Gothenburg, Sweden
welzel @chalmers.se

Abstract—Requirement conflicts commonly occur in soft-
ware development, especially for complex systems that involve
many requirements. Resolving these conflicts can be very time-
consuming and costly. Moreover, due to the contextual nature
of requirements conflicts, resolution strategies are needed that
can be tailored to a specific conflict and its context. Currently,
there is a lack of research on what categories of conflicts exist
and how practitioners manage these conflicts. To enable more
adaptive resolution strategies, the aim of this research is to map
what types of requirement conflicts are encountered and how
they are managed in practice. Through an interview study with
eleven participants from eight companies in six domains, we
identified three levels of conflict types that connect to four types
of causes. These types and causes revealed two main dimensions
that impact conflict management. One dimension is related to
the nature of the conflict, either technical or social, and the
other dimension is related to the nature of the requirement
scope, which is either too constraining or too undefined resulting
in stakeholders making assumptions that create conflicts. We
found that these two dimensions impact what conflict resolution
strategies are most commonly used for different types of conflicts.

Index Terms—Requirement Conflict, Conflict Types, Conflict
Causes, Conflict Resolution, Interview Study

I. INTRODUCTION

Systems today need to fulfil several different quality
attributes and requirements to satisfy the needs of stakeholders
as well as different system contexts [1], [2]. Conflicts between
requirements then arise when the requirements are not com-
patible or contradictory [3], making it impossible to find a
solution in such a way that all requirements are achieved [4].

Different aspects of requirement conflicts and their nature
have been identified to develop heuristics for conflict man-
agement and support rule-based approaches [5]-[7]. However,
while these methods can be effective for managing conflicts,
they generally do not consider the contextual factors around
requirement conflicts such as the cause of the conflict or
the dynamic nature of the system and business environment,
which can increase the complexity of requirement conflicts
[8]. Moreover, there are few empirical studies focusing on
the different factors of conflicts and conflict management
in practice. One prominent example is an empirical study
conducted by Hadar et al. [9] where they interviewed different
companies to understand the challenges and attitudes towards

Rebekka Wohlrab
Dept. of Computer Science and Eng.
Chalmers | University of Gothenburg
Gothenburg, Sweden
wohlrab@chalmers.se

Richard Berntsson Svensson
Dept. of Computer Science and Eng.
Chalmers | University of Gothenburg

Gothenburg, Sweden
richard@cse.gu.se

requirement inconsistencies in practice. They found that there
are inconsistencies between the strategies suggested in theory
for managing inconsistencies and what is applied in practice.
Therefore, more practice-based evidence is needed for effec-
tive conflict management strategies.

In order to account for the various factors and circumstances
affecting requirement conflicts, conflict management strategies
need to be able to adapt to be effective in different contexts.
However, developing these strategies requires a better under-
standing of the attributes of conflicting requirements in dif-
ferent contexts and their impact on managing conflicts. These
insights would extend the understanding of what aspects are
important to manage conflicts between requirements. There-
fore, to gain in-depth knowledge of the types of requirement
conflicts experienced in practice, we conducted an interview
study with ten semi-structured interviews. The research setting
consisted of eight companies and six different domains. We
provide empirical insights into the types of conflicts and how
they are typically resolved. We identified two dimensions to
requirement conflicts according to their causes which impact
what strategies are typically used to resolve the conflict. One
dimension for categorising conflicts and their management
strategies pertains to the requirement scope either being too
constrained or too undefined. The second dimension relates
to the nature of the conflict, which is either more technical
relating to the software internally or social if it is external to
the software.

The remainder of the paper is structured as follows: Sect. II
discusses related work. Sect. III presents the research method-
ology. In Sect. IV, the findings of the study are described
and further discussed in Sect. V. Lastly, conclusions and
suggestions for future research are given.

II. RELATED WORK

Multiple attempts have been made to categorise requirement
conflicts to help with the identification and resolution of
conflicts, such as through heuristics and models [10]-[12]. The
types of conflicts have been based on, for instance, the nature
of the requirements in conflict. Butt er al. [7] type require-
ment conflicts as either ‘mandatory’, ‘essential’, or ‘optional’
depending on the level of importance of the requirements in
conflict. Conflicts between NFRs have also been categorised



as ‘absolute’, ‘relative’, or ‘never’ conflicts [13]. Furthermore,
the relationships between imprecise requirements have been
classified as either conflicting, cooperative, mutually exclu-
sive, or irrelevant to develop methods for conflict detection,
resolution, and impact assessment [14].

Aside from the nature of the requirements in conflict,
requirement conflicts have also been categorised based on the
semantics of the requirements. For example, Easterbrook [15]
distinguishes between (i) conflicting interpretations, i.e., dis-
crepancies in the perceptions of what the current requirements
are, (ii) conflicting designs, i.e., discrepancies about how the
system should be, or (iii) conflicting terminology, i.e., discrep-
ancies in the terms used to describe the system and require-
ments. These conflicts can then be not-interfering, partially-
interfering, and mutually exclusive depending on their severity.
Moreover, Kim et al. [16] define two types of requirement
conflicts, activity and resource conflicts, based on the conflict
cause. They describe the requirement’s authoring structure as
‘Action (Verb) + Object (Object) + Resource (Resource)’ and
the conflict type is subsequently based on whether a conflict
arose due to a misalignment in one of these three aspects, such
as requirements having opposite actions involving the same
object, same action involving different objects, or relying on
the same resource which is limited to some requirements.

The existing categorisations provide frameworks for classi-
fying requirement conflicts and support conflict management.
However, to the best of our knowledge, no current categorisa-
tions are taking into account the larger context of requirement
conflicts, such as the system or organisational environment,
to guide conflict management. Additionally, very few studies
consider the cause of the conflict for deciding what conflict
management strategies to apply. In our study, we look at these
aspects and contribute with a new perspective on conflict types
and conflict resolution based on the cause.

III. RESEARCH METHOD

The aim of this research is to understand how conflict
management takes place in practice considering the different
contexts of conflicts. One aspect of these contexts is the
different types of requirement conflicts and how these might
impact conflict management. Therefore, the research question
in focus for this study is the following: How are different
types of requirement conflicts managed in practice?

In order to get a deeper understanding of requirement
conflicts in practice and the different contexts in which they
take place, a qualitative research approach was taken to explore
and generate new insights about conflict types in practice.
The study was designed as an interview study and semi-
structured interviews were chosen for data collection to enable
flexibility as well as consistency and comparability between
the interviews [17].

A. Data Collection

Ten semi-structured interviews were conducted with eleven
participants from eight companies to gather empirical insights.
The interviewees came from six different domains and had

between five and twenty years of experience in the area of
requirements management. An overview of the interviewee
characteristics is shown in Table I. The interviews were
conducted in person or online. They lasted between 45 to 60
minutes. Eight of the interviews were held in English and
two in Swedish depending on the language preferred by the
interviewee. Participants ES and E6 were interviewed together.
Nine of ten interviews were recorded with the participant’s
permission and afterwards transcribed for analysis. Detailed
notes were taken during the interview that was not recorded.

TABLE 1
INTERVIEWEES’ CHARACTERISTICS
IDT Role Years of Domain
Experience
Al CEO 5 years Management Systems
B2 Cybersecurity Engineer 5 years Automotive
C3 Head of Onboard Sales and 7 years Freight Transport
Services Digital
D4 Product Owner 9 years Management Systems
E5 Quality Assurance Manager 20 years Medical
E6 Project Manager 6 years Medical
F7 System Architect 20 years Automotive
G8 Product Owner 15 years Telecommunications
H9 System Architect 15 years Automotive
H10 IT Director 18 years Automotive
H11 Cluster Leader in Digital 15 years Financial Systems

Finance
TLetter denotes company, number denotes interviewee

Participants B2, F7, G8, H9, H10, and H11 were sampled
based on convenience sampling [18]. The remaining five
participants were sampled according to criterion sampling [19]
to capture other industries and domains as well. The aim of the
selection was to capture as many empirical software contexts
as possible, therefore the criteria were companies of different
sizes and domains, and secondly, their products or services
involve software. There was no set number of participants
determined at the beginning of the study and interviews were
held until no new themes were identified from the interviews
and we considered data saturation to be reached [20].

The interviews were conducted by one interviewer (first au-
thor) and performed according to the interview guide prepared
beforehand. The complete interview guide can be found in
[21]. The questions were formed based on the areas of interest
for this study such as conflict types and management as well
as two general questions on the interviewee’s background.
During the interviews, the context of the study was first
presented to the interviewees, who were then asked questions
about their backgrounds. Moreover, we also asked about and
discussed the definition of the terms ‘requirement’ as well as
‘requirement conflict’. Thereafter, we asked questions about
the participants’ experience with requirement conflicts and
their management such as what conflicts they encountered,
how they were identified and resolved as well as what they
considered to be the conflict’s cause. After the initial discus-
sions about conflicts experienced by the interviewees, they
were also shown a set of examples of requirement conflicts
from a list of ten examples that had been prepared before the



Raw Data Codes

A lot of times the conflict is
because we think we talk about the
same stuff, but actually people have
their own interpretation of the same
problem. So then we end up with a

misunderstanding of each other.

issue

Misunderstandings

Lack of shared understanding

We might try to fit it in a way so
that the conflict doesn't arise

i
because it might be, for instance, i

Software flexibility to prevent

) conflict
one customer might request a

button to be red and another
customer wants the button to be
green, but essentially they might just
need clearer visuals, so the solution
would be to add an icon that clearly
defines what the button does or
making it configurable.

stakeholder

Different interpretations of same

> Knowledge management issue

Customisation to resolve conflict —

Identifying core value wanted by

Themes Sub-Top-Themes Top-Themes

Requirement management

Undefined requirements f
issue

Causes

___ Stakeholder management /
issue

___ Constraint at requirement
level

Software flexibility Prevention

___ Constraint at requirement

Flexible software design
level

Resolution
Identifying core needs Undefined at requirement
of stakeholders B level

Fig. 1. Coding Examples

interviews [21], which were created during discussions within
the author group and partially based on examples found during
the initial literature review [22]-[24]. The interviewees’ previ-
ous answers influenced what examples were shown during the
interview. Conflict types that had already been named were
not discussed again. Instead, the examples were used to probe
the interviewees for different conflict types. When the intervie-
wees were shown examples, they were first asked whether they
were familiar with the conflict it presented. Additionally, we
asked specific questions about the context and management
of the example conflict as specified in the interview guide
[21]. Conflicts that had not been experienced or observed were
noted as not being relevant for the interviewee and they were
asked about why this was the case. Overall, these examples
served to stimulate discussion to identify other potential types
of conflicts that had not been previously mentioned.

B. Data Analysis

The data from the interviews were analysed using a thematic
analysis based on the six steps by Braun and Clarke [25].
Data Familiarisation. In order to familiarise ourselves with
the data, the transcriptions and notes from the interviews were
read actively multiple times.

Generating Codes. In step two, initial codes were generated.
Open codes were used to analyse the results to maintain an
explorative approach and identify as many patterns as possible.
Generating Themes. The identified codes were then grouped
into different themes based on the patterns that could be iden-
tified among the codes. Themes were generated throughout
the interview process as new codes emerged. The codes and
subsequent themes were generated by the first author.
Reviewing Themes. The identified themes were continuously
reviewed and refined to create distinct and coherent themes.
After coding several interviews, existing themes and their
corresponding codes were reviewed and revised if needed to
ensure that each code presented one clear idea. With the review
of the identified themes after each interview, we could also
ensure sufficient data were collected.

Defining Themes. The themes were further refined and de-
fined to accurately reflect what each theme represents. This

step was performed within the author group after all interviews
had been conducted. Two complete coding examples are
shown in Fig. 1.

Producing the Report. In the final step, the results from the
analysis were summarised and written down as shown in Fig. 2
and described in Section IV.

C. Threats to Validity

Validity threats are discussed based on Runeson et al. [17].
External Validity. The chosen research design and number
of participants imply a low external validity. To minimise the
impact of this, we interviewed individuals in different roles,
domains as well as companies. Furthermore, the purpose of
this study’s research design is not to be generalisable but rather
to enable a more explorative approach and gain deeper insights
into the topic.

Reliability. A set of example conflicts was shown to the
participants during the interviews to gain insights into specific
scenarios. Due to time constraints, only a subset of the
examples was shown and which ones were chosen was based
on the interviewee’s role and their previous answers, so that
the same conflict scenarios were not discussed again. This
increases the risk of bias impacting the reliability of this
research. Therefore, to increase the reliability, the interview
material used in the study is included and the collection as
well as analysis of data are described in detail with examples.
Internal Validity. Since different subsets of examples were
discussed during the interviews, the internal validity is affected
in terms of establishing causality between conflict types,
causes, and conflict management. Nonetheless, the research
aim was to collect significant insights into conflicts and
conflict management in practice rather than making inferences
about all types of conflicts that exist. The internal validity was
further upheld through a clear chain of evidence as described
in the method. Additionally, internal validity was maintained
through peer debriefing to reduce the risk of bias [17] and the
thematic analysis was performed among three researchers to
include different perspectives and maintain objectivity.

Construct Validity. In order to achieve a higher level of
construct validity of the research, the definitions for both



conflicts between requirements as well as the term requirement
itself were discussed during the interviews to ensure that the
interviewer and interviewees shared the same understanding of
these concepts [17]. Moreover, some of the examples shown
during the interviews can be considered very generalised
which presents another issue to the research validity. However,
the examples were kept at a generally understandable level
to initiate discussions about different types of requirement
conflicts and their management.

IV. RESULTS

To answer the research question of this study, it is necessary
to understand what types of requirement conflicts exist in
practice and their current management strategies. Fig. 2 shows
an overview of our findings and includes all the themes
identified during the thematic analysis. We present the types
of conflicts in Sect. IV-A, their causes in Sect. IV-B, and the
strategies for resolving conflicts are described in Sect. IV-C.

A. Types of Requirement Conflicts

The study showed that there are different perspectives
for defining requirement conflicts. Our interviewees defined
conflicts as a contradiction between two or more requirements.
Many interviewees also noted that conflicts are contextual
and that the definition of a conflict is dependent on, for
example, the role and subsequent perspective an individual
takes. H9 explained, “It is quite easy to spot the conflict
I think for a specific [requirement], because [a] conflict is
also contextual. So, depending on your role looking into those
inputs coming into your specific context, you will be able to
assess if that is a conflict within your specific consideration
context”. Consequently, to categorise a requirement conflict,
we need to consider the contexts in which conflicts occur and
on what level.

At the core of all the mentioned conflicts, there is a
conflict between either non-functional requirements (NFRs) or
functional requirements (FRs). Therefore, three ‘core’ conflicts
were identified, i) conflict between NFRs, ii) conflict between
NFR and FR, and iii) conflict between FRs, that all participants
have experienced or witnessed to different extents. NFRs were
often found to conflict with FRs or other NFRs due to them
representing a factor that the software needed to comply with
such as laws, standards, or business values. The resolution
of conflicts with NFRs was therefore based on how strict or
important they are and required a trade-off or compromise.

Apart from the conflicts based on the set of requirements,
the interviews revealed different types of conflicts on a higher
contextual level that involved other factors as well, as seen in
Fig. 2. These types are described in more detail below.

1) Software Level Conflict Types: The interviews revealed
three types of conflicts on the software level.

The variability conflict was identified from the interviews
with interviewees Al, B2, C3, D4, ES5, and E6. The conflict
occurs between requirements from different configurations or
variants, such as in different ECUs in the automotive domain.
Moreover, it also represents conflicts between customisability

and standardisation. For example, companies offering one
software platform for multiple different customers need to
find a balance to manage conflicts between requirements that
satisfy individual stakeholder’s needs while maintaining a
reasonable degree of product standardisation.

Implication conflicts stem from conflicts between the re-
quirements of the existing software and new requirements. For
instance, the requirements that come from the existing system
in the form of legacy code can conflict with requirements of
new features or implementations, such as that “it is a function
that works as it should but there might be some dependencies
that make things difficult, for example, old code” (D4). We
found that this type of conflict can occur in systems with
many external dependencies when their requirements do not
align or when one requirement cannot be realised until another
requirement is fulfilled.

Moreover, technical constraint conflicts arise when some
requirements are in conflict with constraints and can therefore
not be fulfilled under the current circumstances. For example,
multiple processes require a certain percentage of a CPU,
which is in conflict with constraints that are mandated by
hardware limitations.

2) Stakeholder Level Conflict Types: The interviews
showed that there are distinct conflict types for conflicting
requirements involving different stakeholders which arise in
the interactions with them. These conflicts tend to involve
cognitive or social issues. Customer conflicts are misalign-
ments between the requirements that were expected by the
customer and the ones that were performed or understood by
the organisation working with them.

Moreover, team conflicts are conflicts between requirements
within companies and different teams. This conflict can occur
when teams are not communicating or coordinating with
each other effectively and they end up defining requirements
that contradict another team’s requirements. Additionally, D4
explained that it can also be a conflict between the views
and goals within or between teams that results in conflicting
requirements. While the team and customer conflicts are very
similar in terms of the cognitive misalignment they represent,
the dynamic between the conflicting requirements from teams
is different since they are working within the same scope of the
software and therefore ideally with similar goals and values,
which does not necessarily apply to requirement conflicts with
external stakeholders.

Furthermore, we identified integration conflicts, which arise
due to contradictions between requirements set by suppliers
or the organisation integrating an external component. When
the supplier’s components do not align with the functions of
the system integrating them, they cannot be merged with the
system which results in conflicts.

3) Business Level Conflict Types: Lastly, our interviewees
mentioned requirement conflicts on the business or operational
level. One of the conflicts that constrain the solution space
due to non-technical aspects is a cost conflict, which arises
from cost constraints that do not allow all requirements to be
fulfilled and therefore cause them to be in conflict.



Requirement level

NFR conflict
FR conflict

* FR vs FR conflict

* NFRvs
» * NFRvs
o
g
=
4
L |
=
c
8 Software level
« Variability conflict *
« Implication conflict * Team col
« Technical constraint conflict *
In-software Requirement management
® constraints issue
] « Lack of software « Different abstraction levels
2 flexibility + Software complexity
o * Low flexibility from * Undefined requirements
quality attributes » Unexpected risks or
dependencies
Constraint at @ Undefined at
requirement requirement
level @ level
* Refining and adjusting * Refining and adjusting
c requirements requirements
.g * Prioritisation * Prototype testing
3 * Relaxation * Analysis of conflict
3 * Flexible software design cause and context
é * Identifying core needs

of stakeholders
* Flexible software design

Stakeholder level

Customer conflict

Integration conflict

Business level

Cost conflict

Compliance conflict

Effort conflict

External vs Internal requirements

nflict °

Out-of-software
constraints
* Resource constraints
» Conflicting standards
or frameworks

Stakeholder management
issue

« Different stakeholders

* Organisational issues

« Inefficient processes

* Knowledge management

issue
D 4

Undefined at
out-of-software !
level

b 4

Constraint at
out-of-software
level

2

* Prioritisation
* Relaxation

Agile processes

Efficient product and
team structure
Communication

Analysis of conflict cause
and context

Identifying core needs

of stakeholders

.

Fig. 2. Overview of Our Interview Findings on Requirement Conflicts

Additionally, a compliance conflict, which involves require-
ments for compliance to certain standards or laws, is a specific
type of conflict that was identified during the study. The
compliance conflict also relates to compliance with company
values and goals. This conflict was found to be typically an
issue between quality attributes.

Effort conflicts could also be identified from the interviews.
These conflicts relate to effort either in the form of time
constraints, due to, for example, deadlines set by stakeholders,
or in terms of the required competence and resources such as
developers or specific expertise. For example, G8 stated “we
also need to find the right people to do it, people with high
experience involved in decisions, but at the same time you then
lose them somewhere else”.

Finally, the results from the interviews showed that a conflict
between internal and external requirements denotes another
type of conflict. This is a conflict between the need and
ability to deliver value. These conflicts often arise from oper-
ational requirements contradicting with system requirements,
or when existing process requirements are in conflict with
the introduction of new technology (C3). With requirements
originating from the customer, this conflict type also often
raises the question of providing some value to customers now

or more value later. For instance, “the customers want new
features, nicer designs and faster systems and (...) the internal
requirements, these are important things as well such as code
quality and maintainability, so it is a discussion between these
two interests, like how much can we do here and now to
actually give customers something new while at the same time
making sure that our internal requirements are met” (D4).

B. Causes of Different Types of Conflicts

The interviewees often mentioned that the resolution of
a conflict varied for each case. Their management strategy
was based on relevant properties of the conflict such as the
cause. The causes for requirement conflicts that were identified
during the study are grouped into four categories; in-software
constraints, requirement management issue, stakeholder man-
agement issue, and out-of-software constraints, see Fig. 2. The
causes were categorised in one dimension as more technical
(in-software constraints and requirement management issue)
or more of a social issue (stakeholder management issue and
out-of-software constraints). The second dimension relates to
the source of conflict being either due to a cause constraining
the scope which restricts the solution space (in-software and
out-of-software constraints), or a cause that makes the scope
more undefined and unclear leading to false assumptions and



knowledge gaps (requirement and stakeholder management
issue). The most relevant causes are described below.

1) In-software Constraints: For causes representing con-
straints on the in-software level, we found that a lack of soft-
ware flexibility can lead to technical constraints or limitations
in how much variability the system can offer and its ability
to adapt to different circumstances or stakeholder needs. Low
flexibility of certain quality attributes of a system was viewed
by seven participants to be another cause for conflict. The
quality attributes are more fixed if they represent, for example,
technical constraints, company and brand values, or have
legal implications. Low flexibility from one quality attribute
typically leads to a conflict due to a compromise between
the attributes or blocking of one or more requirements. For
instance, H9 commented “there is a lot of safety consideration
when it comes to our solutions and that might result in
reducing different or other quality aspects of the system like
availability or performance”.

2) Requirement Management Issue: Another group of
causes is the one that leads to ‘undefinedness’ on the require-
ment level. Different abstraction levels of requirements is one
of these causes. G8 stated “it is not uncommon to get really
high-level requirements and you do not find conflicts there,
then when you look at what the requirement means you realise
there are conflicts”. We found that different abstraction levels
are often associated with the different roles in an organisation
and subsequently different levels of perspectives as well as
requirements. The level of requirement is typically dependent
on its source. For example, non-technical stakeholders will
often put forward high-level requirements that need to be
defined further to understand their implications and identify
conflicts since there is often room for interpretation.

Undefined requirements were identified as another cause
in this category. They can lead to misinterpretations and
uncertainty about what requirements need to be fulfilled. For
instance, too high-level requirements present an issue since
they can lack specific information leading to conflicts later
on between requirements on a more detailed level since the
higher level requirements were interpreted differently among
stakeholders. B2 stated “if your requirements towards your
supplier are too high level, if it is not detailed enough, then it
opens room for interpretations”. Too high-level requirements
can also mean different implementations when there are dif-
ferent configurations in the software as they do not specify
how they are to be implemented. For example, B2 explained,
“let’s say they told us to implement TLS Protocol 1.2, but then
how you implement TLS 1.2 could be very different based
on the configuration you do”. Therefore the need for clear
requirements increases in this case as well.

We found unexpected risks or dependencies such as un-
known requirements that become visible at runtime to be
another reason for conflicts that contribute to an undefined
software scope. E5 and H10 mentioned this to be a cause for
particularly customer and resource conflicts where insufficient
scoping and boundary testing of requirements contributed to
this issue.

3) Stakeholder Management Issue: Causes in this cluster
involve uncertainty or indefiniteness at the out-of-software
level and subsequently for the scope of the software. One of
these is different stakeholders and viewpoints. For example,
conflicts can occur due to a software system having to cater
to customers from different industries and therefore require-
ments. Additionally, different goals or processes among teams,
due to the different roles or value propositions they might have,
can also lead to conflicts.

Inefficient processes for requirement management and com-
munication are another external issue to the software that
can cause conflicts. For instance, B2 explained that there will
be conflicting requirements when teams work independently
with interconnected functionality and there are no efficient
requirement management processes or communication in place
to prevent them. Issues with requirement management can
also cause misalignment because of missing functionalities
that were not gathered in time. Many interviewees mentioned
that conflicts often arise when requirements are not allocated
or communicated at the right time. Moreover, all participants
in this study worked in an agile manner for some or all of
their projects and their descriptions of the cases of inefficient
processes leading to conflicts could also be interpreted as a
lack or misuse of agile processes.

Finally, knowledge management issues such as misunder-
standings, bad documentation, and generally a lack of common
definitions lead to conflicts between requirements as well
based on the findings from five interviews. Usually, conflicts
in the form of misalignments between stakeholders occur due
to misunderstandings or information discrepancies. F7 stated
that “bad product documentation opens up for conflicts since
expectations do not align with the descriptions”.

4) Out-of-software Constraints: One of the causes grouped
in this category that impose constraints from outside the
software are resource constraints which contribute to conflicts
by creating constraints either in the form of cost, time, or
hardware limitations.

Additionally, conflicting standards or frameworks were
mentioned as a cause specifically of the compliance conflict
by B2, C3, ES, E6, G8, and H9. An example of this was
given by B2 operating in the automotive domain where a
conflict was identified between GDPR and the tachograph,
which regulates how much a driver can drive and requires
the system to collect some personal data such as the driver’s
location or the car’s vehicle identification number to help
identify the vehicle. The need to collect and store personal
data interferes with the GDPR and therefore creates a conflict
between their requirements for the system.

C. Resolution of Different Types of Conflicts

Based on the identified causes, it was possible to estab-
lish themes for the resolution strategies that were mentioned
foremost for the respective cluster of causes. We identified
resolution strategies linked to each cause, however, some
strategies can be used for several causes while others are
connected to a specific cluster of causes. The strategies have



been grouped and mapped to these causes, as shown in Fig. 2.
The most frequently mentioned ones are described below.

1) Constraint at Requirement Level: One solution that was
brought up for constraining causes at the requirement level is
prioritisation. It was one commonly named solution for many
types of conflicts by all interviewees and was often linked to
causes relating to constraints. This resolution strategy includes
evaluating requirements according to their value, effort, and
impact. Additionally, the term ‘balancing’ was mentioned and
refers to a form of requirement relaxation where one or
multiple requirements in the conflict are weakened to enable
a resolution. This was brought up primarily in relation to
quality attributes and NFRs as well as resources. F7 stated
that “in the end you need to reach an acceptable level for
all quality attributes and some are more critical than others”.
Requirement prioritisation and relaxation were also considered
to be a collaborative activity that required communication
and involving the right stakeholders to collect the necessary
information and have a sufficient overview of the conflict to
determine the value and impact of different solutions.

Another solution mentioned by eight interviewees was re-
fining and adjusting requirements which is described in more
detail in Sect. IV-C2. Requirements in conflict with a technical
constraint usually need to be adjusted to resolve the conflict
since the constraint is not flexible. Therefore, this strategy is
important for either getting a more defined scope or redefining
it to adjust for constraints.

2) Undefined at Requirement Level: The resolution strate-
gies mentioned for causes on the requirement level that lead
to an undefined scope and subsequent solution space have
a strong focus on gaining a better understanding of the
conflict and the involved requirements. The importance of
managing and maintaining scope was mentioned by multiple
interviewees. Therefore, refining and adjusting requirements
to keep a clear scope as well as rescope when necessary
was one resolution strategy for managing conflict causes that
lead to an undefined scope. For instance, due to the different
abstraction levels in software development, it is important to
break requirements down so they, and subsequently the scope,
become more defined. However, this often requires a deeper
understanding of the product and involved stakeholders.

Additionally, the importance of identifying the actual needs
of stakeholders was found to be another central factor in
resolving conflicts that occur due to a lack of scope clarity or
alignment. A1 mentioned “oftentimes there are requirements
from customers where you then have to try to break down what
they really want”. Subsequently, rephrasing and adjusting re-
quirements can then resolve a conflict to make the requirement
a more accurate reflection of what need it represents.

Furthermore, another resolution strategy we identified is
having a good overview of the conflict, as analysing the
context and cause of the conflict facilitates its resolution. H10
commented “if you just look at things one by one it does not
work because if you have a budget for requirement A and
you get a requirement B that does not have a budget it will
not work (...) and this is a kind of skill you need to have

if you know to put all the components together and identify
the bottlenecks”. Another central aspect of this is involving
different and, more importantly, the right stakeholders, which
is also closely tied to resolution strategies relating to social
causes such as an effective team structure and processes.

Lastly, a flexible software design was another important
means for resolving conflicts involving an undefined scope at
the requirement level based on the interviews with Al, B2, D4,
ES, and E6. The interviewees reported that already considering
the emergence of conflicts in the software design helps resolve
many conflicts, however it can be relatively resource intensive.
Moreover, we found that higher software flexibility through
customisability, such as different software versions, is also
instrumental for conflict resolution. This includes being able
to manage different configurations more effectively that can
cause variability conflicts.

3) Undefined at Out-of-software Level: Communication
was considered by all interviewees as an important resolution
strategy, particularly in relation to the social causes that are
also characterised by the resulting uncertainty in the scope.
Joint reviews or workshops were often used as a tool to
resolve conflicts or to identify, for instance, the right level
of requirements to help resolve integration conflicts (B2).
Moreover, multiple participants mentioned the importance of
people being able to see the value of a solution to resolve a
misalignment between stakeholders, where a significant factor
was having discussions to share different views on a conflict
and in the end reach a common understanding. Communica-
tion became a more influential factor in conflicts that were
considered more complex as information transparency and the
involvement of different stakeholders became more important.

Another factor here is documentation which can further aid
in the understanding of the reasoning and decision-making
behind requirements and design choices to support conflict
management and also to avoid overlaps in requirements from
different stakeholders. However, implicit to effective commu-
nication is also involving the right stakeholders. This leads
to the importance of an effective product and team structure
which was another resolution strategy mentioned in seven
interviews. Since a network of people is typically involved
in conflict management and decision-making, it is important
to have the right structure where the right people can be
included or teams within an organisation can coordinate to
resolve resource related conflicts. C3 reported that for some
conflicts a change in the system or operational processes is
necessary to resolve a conflict. Moreover, G8 mentioned a
bottom-up approach to team structure and software design to
manage conflicts as it is possible to work with more defined
requirements early on and create a clearer scope. However,
G8 highlighted that this can also confuse since the boundaries
to some requirements such as NFRs are derived from top-
level goals or requirements that have to then be managed with
assumptions as well.

4) Constraint at Out-of-software Level: Prioritisation was
also mentioned as a common solution to conflicts with con-
straining out-of-software causes to achieve the requirements



that are considered to be most important for the system
and its stakeholders. For instance, legal requirements are
often prioritised to ensure compliance. Furthermore, we found
relaxation of requirements to be another resolution strategy to
resolve external constraints such as relaxing cost constraints
to reach a higher level of system performance.

V. DISCUSSION

In this study, we identified ten conflict types that can be
grouped into three levels: software level conflicts, stakeholder
level conflicts, and business level conflicts. However, we found
that these types did not impact the management of requirement
conflicts in practice. Instead, how they were managed was
generally dependent on the conflict causes which we grouped
into four clusters as seen in Fig. 2.

Based on our findings, there were some unique connections
between the types and causes of conflicts, which shows the
complex relationship between the two concepts. Conflicts that
take place on the business and software levels were linked to
causes in all four clusters, while conflicts on the stakeholder
level were primarily connected to the dimension of causes
contributing to an undefined requirement scope. Since conflict
types on the stakeholder level were considered to be caused by
process and interaction issues, it indicates that these conflicts
might be more cognitive in nature. Therefore, the human factor
has more of an impact and subsequently needs to play a bigger
role in conflict management as well. Furthermore, many of the
types, as well as causes of conflicts that were identified, were
very connected to the non-technical aspects of software and
requirement engineering such as stakeholder management and
organisational or legal constraints.

Our findings from the interviews show the importance of
looking at the bigger picture when it comes to requirement
conflicts. Existing research [7], [13], [14] mainly focuses on
the nature of conflicting requirements. Yet, these related stud-
ies do not address other contextual factors that generally affect
requirements. Some works [15], [16] consider the semantics
of requirement conflicts such as perception of requirements,
and Kim et al. [16] include the cause of the conflict in
their categorisation. However, larger scale issues that might
be impacting requirement conflicts are generally not captured.
We found that the requirements themselves might not be the
only issue, but possibly reflect a bigger conflict that affects
the software and organisation as a whole. Understanding the
type of requirement conflict and cause that is encountered can
then enable more effective conflict resolution.

A main finding in this study concerning the causes of
requirement conflicts is the distinction between technical and
social causes as well as the requirement scope being either
too undefined or constrained, which subsequently impacts the
conflict and its management. The differentiation of causes
for requirement conflicts being either social or technical has
been discussed in previous research. For instance, Robinson
et al. [26] identifies both technical and social difficulties
leading to conflicts. They consider, for example, too many or
complex requirements as technical difficulties, and conflicting

interests between stakeholders or changing expectations as
social difficulties.

To the best of our knowledge, there is no previous study
differentiating between requirement conflicts according to the
nature of the requirement scope. An undefined scope causes
conflicts when multiple stakeholders do not have aligned
expectations and a common understanding of the requirement
scope. Additionally, a lack of processes in place to manage
this uncertainty further contributes to the conflict, since, for
example, customers might change their minds later on. This
definition of conflict was found in other domains such as on
a more general interpersonal level by Rijsberman [27] who
defines conflicts based on the state of the solution space as
being either simple and well-defined, making it clear what
the solution to the conflict is, or complex and ill-defined,
which involves undefined objectives and values of stakeholders
making it unclear what the solution is. However, it has not been
discussed in the context of requirements and conflicts between
them. Therefore, for the domain of requirements engineering,
it indicates a new way to approach conflict management.

VI. CONCLUSION

Due to the context-dependent and dynamic factors of re-
quirement conflicts and their environment, conflict manage-
ment strategies need to be able to consider and adapt to
these aspects to be effective in practice. This study provides
a general overview of types of conflicts and conflict manage-
ment in practice. We found two dimensions to the identified
conflict types and causes; technical or social and undefined
or constrained. We also found that conflict types are not
the determining factor for selecting management strategies,
instead, the causes for conflicts represented a significant factor
for connecting the types to different resolution strategies. This
study along with previous research shows that the nature of
the conflict is significant to its management. In future work,
we aim to further address this by exploring adaptive resolution
strategies tailored to specific conflict situations. We also plan
to further examine the role of contextual factors of requirement
conflicts and their impact on conflict resolution in practice,
such as investigating the effects of specific resolution strategies
in relation to the conflict context. Additionally, it would be
interesting to explore the use of Al for conflict management
and to help identify different types of conflicts.

ACKNOWLEDGEMENT

Thank you to the participants of the study for their insights.
This work was partially supported by the Wallenberg Al,
Autonomous Systems and Software Program (WASP) funded
by the Knut and Alice Wallenberg Foundation.

REFERENCES

[11 R. V. Anand and M. Dinakaran, “Handling stakeholder
conflict by agile requirement prioritization using apri-
ori technique,” Computers & Electrical Engineering,
vol. 61, pp. 126-136, 2017.



(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

R. Ali, F. Dalpiaz, and P. Giorgini, “A goal-based
framework for contextual requirements modeling and
analysis,” Requirements engineering, vol. 15, pp. 439—
458, 2010.

S. Robertson and J. Robertson, Mastering the require-
ments process: Getting requirements right. Addison-
wesley, 2012.

A. Salado and R. Nilchiani, “The concept of order
of conflict in requirements engineering,” IEEE systems
journal, vol. 10, no. 1, pp. 25-35, 2014.

W. Guo, L. Zhang, and X. Lian, “Automatically de-
tecting the conflicts between software requirements
based on finer semantic analysis,” arXiv preprint
arXiv:2103.02255, 2021.

A. Salado and R. Nilchiani, “The tension matrix and the
concept of elemental decomposition: Improving iden-
tification of conflicting requirements,” IEEE Systems
Journal, vol. 11, no. 4, pp. 2128-2139, 2015.

W. H. Butt, S. Amjad, and F. Azam, “Require-
ment conflicts resolution: Using requirement filter-
ing and analysis,” in Computational Science and Its
Applications-ICCSA 2011: International Conference,
Santander, Spain, June 20-23, 2011. Proceedings, Part
V 11, Springer, 2011, pp. 383-397.

M. Roy, N. Deb, A. Cortesi, R. Chaki, and N. Chaki,
“Requirement-oriented risk management for incremen-
tal software development,” Innovations in Systems and
Software Engineering, vol. 17, no. 3, pp. 187-204,
2021.

I. Hadar, A. Zamansky, and D. M. Berry, “The in-
consistency between theory and practice in managing
inconsistency in requirements engineering,” Empirical
Software Engineering, vol. 24, no. 6, pp. 3972-4005,
2019.

A. Salado and R. Nilchiani, “A set of heuristics to
support early identification of conflicting requirements,”
in INCOSE International Symposium, Wiley Online
Library, vol. 25, 2015, pp. 266-279.

B. Boehm and H. In, “Identifying quality-requirement
conflicts,” IEEE software, vol. 13, no. 2, pp. 25-35,
1996.

A. Van Lamsweerde, R. Darimont, and E. Letier,
“Managing conflicts in goal-driven requirements engi-
neering,” IEEE transactions on Software engineering,
vol. 24, no. 11, pp. 908-926, 1998.

D. Mairiza and D. Zowghi, “Constructing a catalogue of
conflicts among non-functional requirements,” in Evalu-
ation of Novel Approaches to Software Engineering: 5th
International Conference, ENASE 2010, Athens, Greece,
July 22-24, 2010, Revised Selected Papers 5, Springer,
2011, pp. 31-44.

X. F. Liu and J. Yen, “An analytic framework for
specifying and analyzing imprecise requirements,” in
Proceedings of IEEE 18th International Conference on
Software Engineering, 1996, pp. 60—69.

[15]

S. Easterbrook, “Resolving requirements conflicts with
computer-supported negotiation,” Requirements engi-
neering: social and technical issues, vol. 1, pp. 41-65,
1994.

M. Kim, S. Park, V. Sugumaran, and H. Yang, “Manag-
ing requirements conflicts in software product lines: A
goal and scenario based approach,” Data & Knowledge
Engineering, vol. 61, no. 3, pp. 417-432, 2007.

P. Runeson, M. Host, A. Rainer, and B. Regnell, Case
study research in software engineering: Guidelines and
examples. John Wiley & Sons, 2012.

S. J. Stratton, “Population research: Convenience sam-
pling strategies,” Prehospital and disaster Medicine,
vol. 36, no. 4, pp. 373-374, 2021.

L. A. Palinkas, S. M. Horwitz, C. A. Green, J. P. Wis-
dom, N. Duan, and K. Hoagwood, “Purposeful sampling
for qualitative data collection and analysis in mixed
method implementation research,” Administration and
policy in mental health and mental health services
research, vol. 42, pp. 533-544, 2015.

G. Guest, A. Bunce, and L. Johnson, “How many
interviews are enough? an experiment with data sat-
uration and variability,” Field methods, vol. 18, no. 1,
pp. 59-82, 2006.

A. Welzel, Interview guide, 2024. [Online]. Available:
https : // figshare . com / articles / journal_contribution /
Interview_Guide_pdf/25049972.

T. Moser, D. Winkler, M. Heindl, and S. Biffl, “Re-
quirements management with semantic technology: An
empirical study on automated requirements categoriza-
tion and conflict analysis,” in Advanced Information
Systems Engineering: 23rd International Conference,
CAiSE 2011, London, UK, June 20-24, 2011. Proceed-
ings 23, Springer, 2011, pp. 3-17.

J. C. Maxwell, A. I. Antén, and P. Swire, “A legal cross-
references taxonomy for identifying conflicting software
requirements,” in 2011 IEEE 19th international require-
ments engineering conference, IEEE, 2011, pp. 197-
206.

A. Sardinha, R. Chitchyan, J. Aradjo, A. Moreira, and
A. Rashid, “Conflict identification with ea-analyzer,’
Aspect-oriented requirements engineering, pp. 209-224,
2013.

V. Braun and V. Clarke, “Using thematic analysis in
psychology,” Qualitative research in psychology, vol. 3,
no. 2, pp. 77-101, 2006.

W. N. Robinson, S. D. Pawlowski, and V. Volkov, “Re-
quirements interaction management,” ACM Computing
Surveys (CSUR), vol. 35, no. 2, pp. 132-190, 2003.

F. R. Rijsberman, Conflict management and consensus
building for integrated coastal management in Latin
America and the Caribbean. Inter-American Devel-
opment Bank, Sustainable Development Department,
1999.



