
What Impact do my Preferences Have?

A Framework for Explanation-Based Elicitation
of Quality Objectives for Robotic Mission Planning

Rebekka Wohlrab1[0000−0002−5449−7900], Michael
Vierhauser2[0000−0003−2672−9230], and Erik Nilsson1

1 Chalmers | University of Gothenburg, Gothenburg, Sweden
wohlrab@chalmers.se; erik1.nilsson2@gmail.com

2 University of Innsbruck, Innsbruck, Austria
Michael.Vierhauser@uibk.ac.at

Abstract.

Accepted to the 30th International Working Conference on Requirement Engineering: Foundation
for Software Quality (REFSQ).
This version of the contribution has been accepted for publication after peer review, but is not the
Version of Record and does not reflect post-acceptance improvements, or any corrections.
Use of this Accepted Version is subject to the publisher’s Accepted Manuscript terms of use
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms

[Context and motivation] Successful human-robot collabo-
ration requires that humans can express their requirements and that they
comprehend the decisions that robots make. Requirements in this con-
text are often related to potentially conflicting quality objectives, such
as performance, security, or safety. Humans tend to have preferences re-
garding how important different objectives are at different points in time.
[Question/problem] Currently, preferences are often expressed based on
assumptions of what importance level should be assigned to a quality ob-
jective at runtime. To assign meaningful preferences to quality objectives,
it is important that humans understand the impact of these preferences
on the behavior of a robot. To the best of our knowledge, there is yet
no framework that supports the explanation-based elicitation of quality
preferences. [Principal ideas/results] To address these needs, we have de-
veloped OBJUST, a framework that helps with the interactive elicitation
of preferences for robot mission planning. [Contribution] The framework
relies on the specification of human preferences and contrastive explana-
tions. We evaluated our framework in a study with 7 participants. Our
results indicate that the visual and textual explanations of the generated
robotic mission plans help humans better understand the impact of their
preferences, which can facilitate the elicitation process.

Keywords: quality attributes · elicitation · robot mission planning · contrastive
explanation

1 Introduction

To enable human-robot collaboration, humans need to be able to express their
(potentially changing) objectives. To support the elicitation of objectives, it is
crucial that humans understand how robots work, what tasks they are perform-
ing, and why robots select particular actions that were considered optimal in
a given situation [23]. In practice, multiple objectives are used in robot mis-
sion planning, many of which are quality attributes such as performance, energy
consumption, safety, or security [35,34,28].
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In certain situations, a quality objective might become more important (e.g.,
due to an arising safety hazard, where a robot should avoid a location), result-
ing in the need to replan missions [11]. However, it is not always obvious how
different requirements result in different plans [45]. Previous work found that hu-
mans frequently struggle with understanding how their preferences of different
quality objectives affect the automated planning process [2]. The need for expla-
nations as a guiding tool in requirements engineering for self-adaptive systems
has been raised [41]. To the best of our knowledge, there is no human-on-the-
loop approach that helps humans to elicit changing preferences supported by
explanations [49,29]. It is not enough to elicit input once at the beginning, but
the dynamic nature of run-time contexts and stakeholder preferences [41,49] may
require recalculating a mission with new or updated references.

Stakeholders working with robots are not always people directly interacting with
a robot, but may be supervisors who operate systems or observe them at a
distance. For example, in a warehouse, there might be few humans who directly
communicate with a robot. For these scenarios, it is beneficial to have a user
interface that can help humans get an overview of the planning problem, indicate
quality objectives, and understand the tradeoffs of a particular plan [19,13].

In this paper, we present the OBJUST framework that enables humans to express
their preferences for robot mission planning, provides explanations of plans that
come with different tradeoffs, and further helps humans adjust preferences if nec-
essary. While many existing approaches rely on textual explanations only [45],
our approach supports a combination of textual and visual explanations. OB-
JUST does not propose or prescribe a specific requirements elicitation technique,
but provides a framework to help stakeholders assess the effect of different pref-
erences on the expected outcome of a planning problem. In a preparatory step,
requirements are collected from stakeholders, e.g., using brainstorming, inter-
views, or workshops [10,16,4]. The problem is that these requirements are often
elicited based on assumptions about how systems will act at runtime and how
preferences might impact the behavior of the final system. Making such assump-
tions is not feasible and desirable in practice. To mitigate this issue, once an
initial set of requirements has been collected, OBJUST can be used to investi-
gate the effect of different preferences on the planning results. We put a special
emphasis on providing a comprehensive explanation of why certain paths were
deemed optimal by the planning algorithm.

We claim three main contributions with our OBJUST framework. First, we pro-
vide a list of requirements for an elicitation and explanation framework. Second,
we propose an architecture of our elicitation and explanation framework along
with a domain model for the underlying knowledge base. To demonstrate the
framework’s applicability, we provide an open-source prototype implementation.
Finally, we provide a user dashboard that supports user input and explainability.

Sect. 2 describes the background and related work. Sect. 3 presents our research
method. In Sect. 4 we then present OBJUST. We describe our evaluation in
Sect. 5. Sect. 6 presents the threats to validity. In Sect. 7, we discuss the results,
limitations, and avenues for future research.
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2 Background

Robotic systems need to consider different quality requirements, to ensure that
the system can respond to changing conditions in the environment, such as
changes in workload, resource availability, or emerging security threats [32].
Quality objectives are often encoded in cost functions representing the costs as-
sociated with a certain action or sequence of actions. For instance, the cost might
represent the distance traveled, energy expended, or risk encountered [17,48]. In
related work, these cost functions are often combined in a weighted sum [18,20].
However, it is not always obvious how the weights of such a global cost function
should be set. Stakeholders require tools and decision-making techniques to assist
their prioritization of quality objectives and reach consensus [41].

2.1 Motivating Example

We represent the mission planning problem as a graph, consisting of locations
and edges. Fig. 1 depicts a map containing locations and edges that a robot
can choose from to reach its destination, where the number over each edge is
the distance between locations. In this example, we use three quality objectives:
travel time, safety, and privacy. Safety is measured in terms of collisions and
privacy in terms of the expected number of privacy intrusions.
Traversing a normal edge yields a safety cost of 0, a partially occluded edge costs
1, and an occluded edge costs 2. Passing a public location yields a privacy cost
of 0, a semi-private location costs 1, and a private location costs 2.
To calculate the optimal path, we define the cost function for a plan σ as a
weighted sum:

c(σ) = wtt · ctt(φtt(σ)) + wcol · ccol(φcol(σ)) + wint · cint(φint(σ))

where wtt, wcol, wint ∈ R+, and wtt + wcol + wint = 1.
c∗ is the local cost function for each quality attribute, φ∗(σ) is the total cost of
each attribute in a path, and w∗ is the weight of each quality attribute. Weights
are used to encode stakeholders’ preferences concerning the importance of that
quality attribute. The local cost function c∗ is calculated by quantifying the

Fig. 1: A planning graph. The node colors represent 3 node types. The line styles
(solid, dashed, dotted) represent normal, semi-occluded, and occluded edges.
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Table 1: Cost function values of paths for different preferences.

wtt wcol wint Locations Optimalφtt φcol φint ctt ccol cint c

1 0 0 3 , 4 Yes 3.414 2 1 1 2 1 1

2 No 4 1 2 1.172 1 2 1.172

0 1 0 3 , 4 No 3.414 2 1 1 2 1 2

2 Yes 4 1 2 1.172 1 2 1

0.25 0.5 0.25 3 , 4 No 3.414 2 1 1 2 1 1.5

2 Yes 4 1 2 1.172 1 2 1.293

local cost for a path in relation to the least expensive path’s cost for the same
attribute.
An automated planner may choose a path depending on the weighted preferences
of quality objectives. Tab. 1 displays the attribute costs and cost function values
for several sets of preferences. In the case where only travel time is relevant

(wtt = 1), the path 1 → 3 → 4 → 5 is optimal. If the system only cares

about safety (wcol = 1), then the path 1 → 2 → 5 is deemed optimal.
Fully prioritizing a single quality attribute is easy, but mixing weights does
not always yield intuitive paths. E.g., for the preferences wtt = 0.25, wcol =

0.5, wint = 0.25, the path 1 → 2 → 5 is deemed optimal by the robot.
However, why exactly was this path chosen? Even in this small graph, it is not
always easy to calculate this by hand, or by intuition. For large maps, identifying
the optimal path requires error-prone and time-consuming calculations. There-
fore, solutions are needed that help humans to understand the consequences of
their preferences.

2.2 Related Work

Priority awareness: Samin et al. [39,40] have coined the concept of priority
awareness with their Pri-AwaRE approach, to automatically adjust priorities
to satisfy QoS requirements. Priorities are similar to preferences in OBJUST.
Constraints can be expressed as well, but are not the focus of this paper. It
appears promising to combine OBJUST with Pri-AwaRE, so that explanations
can be given with respect to why certain requirements are fulfilled and what
impact the adjusted priority values have.
Besides cost functions, there exist other ways of representing priorities of quality
objectives. For example, some existing approaches select so-called knee solutions
among a set of Pareto-optimal solutions [8,22]. OBJUST is similar in the sense
that it selects Pareto-optimal solutions, takes the balanced points by default (if
all priorities are the same, as in our example), but allows to deviate from them
when quality objectives are reprioritized.
The need to dynamically adjust requirements for self-adaptive systems has been
addressed, for example, by frameworks to enable goal model adaptation [25,34].
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It focuses on run-time verification of adaptable goals. Similarly, approaches based
on KAOS [1,9] have a general focus on functional goals and uncertainty. While
goal modeling can capture quality-related aspects as well, our focus lies more
on quality attributes and the impact that quality preferences have on generated
plans. In this area, Bryl et al. [3] explored the use of goal modeling and require-
ments analysis, in conjunction with planning techniques using Tropos. Similar to
our work, they describe a tool-supported approach for analyzing and exploring
alternative requirements. Their work does not lie on the changing assignment of
different weights to soft goals, whereas the assignment of preferences for different
quality attributes is exactly the focus of OBJUST. Our previous work [52] has
addressed the issue of run-time adaptation of quality attributes. We elaborated
on the challenges and proposed steps towards quality attribute adaptation. Sim-
ilarly, Li et al. developed a framework for preference adaptation and concluded
that future works need to explain the impact of preferences to users [29]. This
is the research gap we are addressing in this paper: making the impact of pref-
erences explicit so that they can be better elicited.
Explainable planning: In recent years, the area of explainable planning has re-
ceived increased attention [24]. Contrastive explanations are among the most
common forms of explanation proposed by related work [14,27,37,7].They can
help human users identify potential biases and errors in a robot’s decision-
making [33]. Contrastive explanations have been used to help humans under-
stand why a robot mission plan was optimal for a given set of quality objec-
tives [45]. Eifler et al. [14] developed a user interface that allows human users
to iteratively explore the planning space, ask “why not” questions, and specify
planning goals. Existing approaches often focus on in-situ explanations, in which
a robot explains a current action it just took or is about to take [6,42]. OBJUST
focuses on explanations of multiple planning alternatives for entire missions, to
help humans give appropriate input during interactive robot mission planning.
Preference elicitation: While traditional explainability approaches for robot mis-
sion planning have focused on describing why one plan is optimal or better than
another, we focus on giving input to users who specify their (potentially chang-
ing) preferences to facilitate replanning at runtime.
Shaikh et al. [43] proposed a related approach that relies on a GUI. Similar to
OBJUST, they also use sliders to indicate the importance of different quality
objectives. Besides sliders, also a palette interface and a prism interface were
implemented. Both the slider and the palette interfaces were found to be usable.
OBJUST extends the use of interfaces for preference elicitation by providing a
visualization and explanation component that can help humans when interac-
tively exploring how their preference selection impacts the generated plans. In
that way, preferences can be adjusted so that the desirable behavior is achieved.

3 Research Method

We applied design science [50] with several iterations of solution design and val-
idation. In this paper, we focus on the framework for interactive elicitation and
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Table 2: Overview of the study participants, their occupations, and experiences.

Part. Occupation Experience with technical sub-
jects

1 Engineering manager 3-5 yrs.
2 Graduating software development student 1-2 yrs.
3 Graduating software engineering student 1-2 yrs.
4 Software developer 6+ yrs.
5 Backend developer 3-5 yrs.
6 Cloud engineer/architect 6+ yrs.
7 UX-design student 0 yrs.
8 Consultant manager 6+ yrs.
9 Software architect 6+ yrs.
10 Product owner 6+ yrs.

explanation as the design artifact. The goal of the research was to better under-
stand humans’ needs for explanation to guide the interactive elicitation of quality
preferences, to develop the OBJUST framework supported by a prototype, and
to evaluate to what extent the framework fulfills the needs of our participants.
Our process consisted of (0) identifying shortcomings of existing solutions, (1) a
requirements elicitation phase with human participants; (2) the development of
the conceptual domain model and prototype implementation; and (3) an evalu-
ation phase of the prototype. Interview material can be found on Figshare3, and
the implementation of our prototype is available online4.

Table 2 shows an overview of the participants. All participants had experience
with UX or technical subjects, with levels of experience ranging from senior
students to practitioners who had worked in industry for more than 6 years.

Participation was voluntary, the participants were asked to give consent to par-
ticipate in the study, and the procedures were explained. All participants were
informed about their anonymity and assured that they could withdraw from the
study at any point in time. No personally identifiable information was collected.
The conducting researcher took notes and recorded the data from the survey.

After the interviews, the data was coded [15] using the QualCoder5 tool for the
thematic analysis. Codes were created in an iterative way and structured into
categories of codes as a tree to arrive at our findings.

Requirements Elicitation Phase: We performed interviews with Part. 1–7
to investigate challenges when expressing preferences and understanding plans.
Part. 8–10 were not available but participated in the evaluation phase instead.

One author performed the elicitation and was present in all sessions. The sessions
relied on pen-and-paper calculations, in which the participants were asked what
path would be optimal for a given set of quality objective weights. We encouraged
the participants to think aloud. The participants were also asked questions about

3 https://doi.org/10.6084/m9.figshare.24006978.v1
4 https://github.com/SE-CPS/OBJUST_public
5 https://qualcoder.wordpress.com

https://doi.org/10.6084/m9.figshare.24006978.v1
https://github.com/SE-CPS/OBJUST_public
https://qualcoder.wordpress.com
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what features would be useful to alleviate such a task. The questions can be found
in the supplementary material3 and were mainly concerned with the participants’
reasoning and perceived difficulties. Furthermore, participants were also asked
for suggestions of features that might help to mitigate their challenges.
The data from the elicitation phase was then coded by the researcher who per-
formed the interviews. Afterwards, the codes were grouped into themes and
discussed in a data analysis workshop. We found that the challenges from the
participants can be addressed by a number of requirements. As an outcome of
this phase, we collected a set of six requirements/core features (cf. Sect. 4.1)
serving as the input for the prototype implementation.
Development: We developed the framework based on the data from the elici-
tation phase. We systematically went through the requirements and understood
what features were needed in a prototype that addressed the participants’ chal-
lenges. We also developed a domain model by understanding the key concepts
that were needed to reason about the robot mission planning domain.
Think-Aloud Study for Evaluation: Part. 1, 2, 5, and 7–10 were involved
in this phase. The other participants were asked to participate but were not
available. In the evaluation phase, participants worked on different tasks with
the tool and were asked to fill out a short survey.

4 Framework for the Interactive Preference Elicitation

In this section, we introduce the elicited requirements for our framework (Sect. 4.1),
the core implementation (Sect. 4.2), and visualization and explanation features
(Sect. 4.3).

4.1 Requirements for Interactive Elicitation and Explanation

Based on our analysis, we arrived at a list of the following six functional require-
ments for an explanation visualization framework:

(R1) The system shall allow the user to prioritize quality objectives: R1 is con-
cerned with the importance of eliciting the relevance of each quality objec-
tive, which in turn serves as an important input to automated planning.

(R2) The system shall display an optimal path on a map or graph, along with
its costs: In the elicitation phase, we found that identifying the optimal
path took a lot of time and it was difficult for participants to manage the
complexity of planning problems quickly.

(R3) The system shall display alternative paths with their costs: R3 is relevant to
compare a selected path to one that might seem optimal, but is not. This
visual contrastive explanation was considered beneficial by the participants.

(R4) The system shall provide a textual explanation of why a path is optimal:
During the elicitation, we found that participants struggled with the required
calculations to understand what route was optimal given a cost function.
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(R5) The system shall indicate important nodes that distinguish one path from
other paths: Indicating differences between paths that are connected to key
decision points in the map was considered crucial by the participants.

(R6) The system shall support traceability between quality (input) data and gener-
ated plans: R6 ensures that different paths can be easily traced back to the
corresponding input requirements.

executes

Planner

Robot

executes

triggers

Plan VisualizationInput Elicitation

Explanation

User Dashboard

updates

Knowledge base
reads/updates

re
ad
s/
up
da
te
s

User

Fig. 2: Overview of the elicitation and explanation framework

4.2 Core Implementation

Fig. 2 provides an overview of the framework, which is described in the following.
Knowledge base: Since it is often useful to explicitly capture concepts and rel-
evant elements in a domain model [31], we have created a model for the adaptive
planning of quality objectives. It supports traceability between quality data and
the generated plans (R6). The model is used as the basis for the knowledge base
and instantiated for each plan generation. For the initial instantiation, we reuse
graph data from a public repository6.
Fig. 3 provides an overview of the three main parts of the domain model. First,
the Qualities part (top) describes the quality input provided by stakeholders,
i.e., their constraints and preferences. Stakeholders can indicate how important a
quality objective is and define constraints, for example, to restrict the value of a
specific quality objective measure to a certain range. The quality objectives and
preferences are then combined in a single Cost Function, e.g., as a weighted sum.
Second, the Environment part (bottom) captures the structure of the Map, i.e.,
Edges (that may be occluded) and Locations with their privacy levels. For edges,
a probability of an edge being successfully traversed can be specified. Finally, the
Planning Output part (middle) represents the result of the automated planning.
The Qualities part and the Environment part are input by humans, or given by
the planning context. The Planning Output part (i.e., the set of locations that
shall be visited) is fed into the robot for plan execution.

6 https://github.com/cmu-able/explainable-planning

https://github.com/cmu-able/explainable-planning
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Fig. 3: Domain model for the underlying knowledge base

Input Elicitation: Fig. 4 shows an overview the user dashboard. The form

on the left is used to elicit the users’ preferences 1 for quality objectives (R1).
For the input elicitation, the map, start and end locations, and preferences are
specified. For the specification of preferences, the Analytic Hierarchy Process [38]
is used. Users can use sliders to perform pairwise comparisons between quality
objectives and indicate how much they prefer one quality objective over another.
Based on this input, values between 0 and 1 can be computed to set the weights
of different objectives. This approach has been applied to elicit preferences for
different objectives before [51,30] and we considered it useful for this framework
as well.
Planner: In our implementation, we opted for Dijkstra’s path-planning algo-
rithm [12,47]. Particularly for robotic applications, a wide variety of mission
planning and path planning algorithms have been proposed [26,46]. OBJUST
provides a flexible component-based framework that allows to easily exchange
the planning component and use a different algorithm. The only requirement is
for the algorithm to support multi-objective optimization, and that it can output
an optimal path, along with the resulting costs of different quality objectives.
For instance, A* [21] can be considered, as it is superior in time efficiency com-
pared to Dijkstra [44,5]. For the heuristics, travel time can be approximated by
using the Manhattan distance. For privacy or safety, it is not obvious what the
admissible heuristics should be.
All quality objectives in the cost function are normalized to ensure that an
objective with a generally higher cost cannot dominate others. We normalize
objectives by comparing the cost for each quality objective in the current path
to the lowest possible cost of that objective.

4.3 Visualization and Explanation

The framework vis-network7 was chosen to display the graphs. An example of

the visualization can be seen in Fig. 4 4 .

7 https://visjs.github.io/vis-network/docs

https://visjs.github.io/vis-network/docs
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2

1 3

4

Fig. 4: Screenshot of the user dashboard, with input elicitation (1), cost overview
(2), textual explanation (3), and plan visualization (4)

All participants in the elicitation phase requested a tool to display multiple
optimal paths at once since it facilitates a comparative analysis of alternative
paths. When multiple paths overlap, it can become a visual clutter. Tooltips are
useful in distinguishing overlapping paths. The mouseover tooltip feature that
can be seen in Fig. 4 indicates the paths that are traversing a specific edge in
the graph, as well as the properties of different edges or locations (R2). In the
example, it can be seen that both the safety path, the privacy path, and the
path optimizing for the cost function traverse the selected edge, which has a
safety cost of 0. The tooltip provides an instant overview, removing the need for
a separate legend for cost details.
Displaying the optimal path was considered the most crucial feature in the elici-
tation phase. The interviewees did not only state that they would like the frame-
work to visualize the selected path, but also the optimal paths if you optimized
for only one quality objective. Therefore, the tool indicates both the plan opti-
mized for the global cost function (where the quality objectives’ weights from
the input elicitation are factored in), as well as the plans optimized for each
individual quality objective. The various alternative paths are highlighted with
different colors, so that users can easily distinguish what objectives a path was

optimized for (R3). Examples can be seen in Fig. 4 in 2 , 3 , and 4 .
Table with cost overview: One feature indicates the costs of different paths

in a table-like structure 2 . In the elicitation phase, several participants (Inter-
viewees 1, 2, and 5) asked for a detailed table where the entries would contain
different weights and the corresponding paths. The table color-codes the costs
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associated with each optimal path for easier identification. In Fig. 4, a few cost
items in the list are highlighted in bold, implying that they represent the low-
est cost for a specific quality objective. This feature aims to mainly combat
the complexity that interviewees perceived during their tasks in the elicitation
phase, removing the need to manually calculate each path’s cost.
Textual explanation: OBJUST provides sentence-based feedback to clarify

visual information 3 (R4). It is achieved using three features:
(i) Descriptive Text, clarifying why a specific path was chosen. In Fig. 4, it
explains that even though travel time had the highest weight, the algorithm
chose to optimize a path for other quality objectives because the difference in
cost for safety and privacy was larger than the difference in travel time.
(ii) Equivalent Paths: This feature shows which objectives have the same costs
for a path. It saves the users time when analyzing paths, especially in larger
graphs.
(iii) Important Nodes (R5): This feature lists important nodes in the graph.
These nodes act like hubs, where the optimal paths for the chosen objectives
diverge or converge. The feature helps to reduce the complexity of larger graphs
by segmenting them, enabling users to focus on a smaller portion of the graph.

5 Findings from our Think-Aloud Sessions

The goal of our think-aloud sessions was to investigate to what extent OBJUST
fulfills the needs of our participants, with a particular focus on the explanation
capabilities and interactive dashboard.
We conducted think-aloud sessions with 7 participants, performed by the same
researcher as in the elicitation phase. We worked with a smaller map (6 locations)
and then a larger one (37 locations). The researcher asked the participants to
explain what path they would estimate to be optimal for different combinations
of weights for quality objectives. Subsequently, the participants were asked to
utilize the tool to solve the tasks. The participants also ranked each feature’s
usefulness.
Regarding the perceived usefulness of the prototype, all participants strongly
agreed that “The tool allows me to accomplish my tasks”. The participants were
satisfied with the tool and considered it to save them time. The most useful
features were the explainability features. Even when dealing with small maps,
the complexity of robot mission planning is so high that it is difficult for humans
to identify an optimal path manually. No participant could provide an accurate
or satisfactory explanation of why a specific path was chosen in the elicitation
phase without the aid of the prototype, except if only a single quality objec-
tive was prioritized. With the tool, participants could give increasingly better
explanations after each task.
Reducing the need for time-consuming calculations: Without OBJUST,
participants had to calculate multiple paths and their costs manually to un-
derstand which path was optimal. The operations were mainly a combination
of sums and products. Still, many participants struggled with the calculations
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and finding an optimal path quickly. When evaluating the prototype, both the
text-based features and the visualization of paths were considered helpful. For
example, Part. 2 stated that “displaying multiple paths was really nice to quickly
get an overview, instead of having to calculate them by hand”.

The text features were perceived as particularly helpful by participants with
limited knowledge of algorithms. To complement the text features, the visual
features provided a quick and simple explanation of what the outcome was, re-
moving the need for a separate legend. Part. 7 stated that “it was quick and easy
to find the optimal path, and I could then use the other features to understand
why it was chosen”. The tooltips indicating equivalent paths were considered
beneficial as well, as they reduced the need to examine multiple individual paths
and helped participants focus on groups of paths instead.

Reducing complexity: In the elicitation phase, we found that the complexity
associated with finding the optimal path was challenging for our participants.
Fig. 5 depicts that in the eyes of the participants, several features were helpful
in reducing the perceived complexity of the planning problem. The participants
deemed it crucial to display the optimal path in large graphs, as they couldn’t
see themselves calculating it by hand, no matter the time limit: “There is no
way I could ever find the optimal path in the large maps by myself, let alone
multiple optimal paths.” (Part. 1).

The cost list and descriptive text were found useful in reducing the complexity:
“I found the cost list super useful because it allows me to easily compare the costs
no matter how complex the paths are.” (Part. 8).

Part. 9 liked that “the graph gets larger, but the descriptive text explanation
remains concise”. When asked which features were their favorites, every single
participant mentioned the cost list. Part. 7 stated that they liked the “display of
costs for each path. It is good with the color differentiation and clear language” .
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Fig. 5: Responses on features’ helpfulness in reducing the perceived complexity.
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6 Threats to Validity

External Validity: The number of study participants was limited, which consti-
tutes a threat to external validity. Further workshops and more participants are
needed to strengthen the findings. With a larger number of participants, we will
be able to perform experiments in a controlled setting and draw statistically
significant conclusions about the usefulness and usability of OBJUST.

Another issue is that different levels of experience might influence how useful
the participants think the framework is. To mitigate this, participants with a
mix of experience were chosen. The external validity is also compromised by
the focus on an example with a fixed set of quality objectives. Furthermore,
we have only investigated the problem in one example domain, with a single
implementation using one path planning algorithm (Dijkstra). To further confirm
the applicability of our framework in a broader context, additional evaluation
is necessary, including a comparison with other mission planning algorithms.
However, the main focus of this paper was not the use of mission planning
algorithms, but rather developing an approach to improve understandability
and reduce the perceived complexity for humans.

Construct Validity: The quality attributes used in our prototype were easy to
understand for all participants. However, the participants in our study might
not have the same interpretation of words such as “quality objective”, “plan”,
or “preference”. This could have led to issues in our qualitative analysis. It was
therefore crucial to spend a few minutes with each participant to establish a
common terminology.

Internal Validity: Possible misunderstandings in the interviews and analysis may
have led to incorrect conclusions. Asking participants to answer Likert-scale
questions allowed for data triangulation with the data from the think-aloud
sessions.

Reliability: The reliability of this study may be influenced by our interpretations.
They may have affected the conclusions drawn from the data. To mitigate this
threat, we aimed to clearly describe our methods and keep a transparent chain
of evidence. All interview guides and questionnaire answers were made public3.

7 Discussion and Future Work

We presented OBJUST, a framework for the interactive elicitation and expla-
nation of quality-oriented mission planning. Our evaluation has indicated that
the framework is useful for eliciting quality preferences, supported by explana-
tions of their impact on generated plans. To the best of our knowledge, there
is no approach that focuses on this gap and combines both visual and textual
explanations.

In the following, we discuss three major findings:

Use of contrastive explanations: Notably helpful features were the concurrent
display of optimal paths for different quality objectives, and their comparison
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using a list of their costs. Our findings confirm previous works about the useful-
ness of contrastive explanations [45,36].
Use of elicitation techniques: In previous works on elicitation, it was found that
it is non-trivial for humans to understand the impact of a set of priorities on
robot mission plans [51,41]. Therefore, OBJUST includes both an elicitation
and an explanation component. We found that without a clear explanation, it is
extremely difficult to understand what plan a given set of preferences leads to.
Visual and textual elements: Our participants stated that the visual features were
useful to very quickly grasp the optimal path, compared to manually calculating
it. Visualizations are useful for explaining what plan is deemed optimal. How-
ever, visual features are harder to generalize and require more development time
compared to text-based features. To apply OBJUST to other systems, it would
be necessary to design appropriate visualizations that are domain-specific. Text-
based features are great at explaining why a plan was deemed optimal. They
are also highly generalizable for different types of robotic systems. The domain
model/vocabulary used in the textual explanation can be adjusted, so that it is
easy to generate explanations for another domain and system.
The presented evaluation is only a pilot study. In the future, we plan to conduct
a study involving more participants with both technical and non-technical back-
grounds. We would like to involve more practitioners and preferably no students.
Such an evaluation would help us to assess whether the approach is applicable
in practice and how much the explanations help end users. We envision different
versions of OBJUST, depending on the system at hand and the concrete setup.
The GUI of OBJUST can be used for users to monitor the real-time behavior of
a robot, intervene when necessary, and specify different preferences depending
on what is desired in a given context. We expect that the general conceptual
framework presented in this paper can be reused and then tailored to specific
contexts and systems. For contexts with many quality objectives and many pos-
sible locations, mechanisms are needed to hide and display relevant information,
so as not to overwhelm the user.
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