
We’re Drifting Apart:
Architectural Drift from the Developers’ Perspective

Emilie Anthony, Astrid Berntsson
Chalmers | University of Gothenburg

Gothenburg, Sweden
{emilie.anthony1, astridberntsson1}@gmail.com

Tiziano Santilli
Gran Sasso Science Institute (GSSI)

L’Aquila, Italy
tiziano.santilli@gssi.it

Rebekka Wohlrab
Chalmers | University of Gothenburg

Gothenburg, Sweden
wohlrab@chalmers.se

Abstract—

©2024 IEEE — Accepted to the 2024 IEEE International Conference on Software Architecture (ICSA’24)

Despite the recognized importance of software
architecture, it is common that the implementation diverges from
the intended architecture over time. This phenomenon is referred
to as architectural drift. In the past decades, mainly technical
solutions and tools have been developed to detect and address
architectural inconsistencies and drift. There is still a lack of
evidence from the perspective of developers and a lack of best
practices to manage drift. This mixed-methods study relies on
interviews with 11 developers and a survey answered by 63
developers from different companies and domains. We analyzed
the data by dividing developers into senior and junior to see
the different perspectives based on work experience. We found
that juniors tend to rely more on documentation, while seniors
have a more experience-related approach. We identified practices
that developers use to mitigate drift, including defining clear
responsibilities, setting best practices, and maintaining reliable
documentation. Finally, we designed and evaluated guidelines to
help developers to face architectural drift.

Index Terms—Architectural drift, survey, interviews

I. INTRODUCTION

The importance of software architecture in software engi-
neering is widely recognized [1]. The most essential charac-
teristics and design limitations of software systems are often
captured in software architectures [2]. Ensuring that the envi-
sioned architecture is consistently implemented is challenging,
despite thorough documentation [3]. As software systems are
developed and maintained, and new requirements emerge,
architectural drift is commonly introduced. Architectural drift
occurs when a software system evolves and gradually moves
from an intended architecture to a different unintended ar-
chitecture [4]. While architectural erosion is caused by direct
violations of the architecture, drift occurs due to modifications
that are not violations, but still introduce inconsistencies with
the architecture [4], [5]. Based on the literature, we have
provided a visual summary of architectural drift in Fig. 1.
It can be seen that an initially implemented architecture is
consistent with the intended architecture. Then, due to various
causes, inconsistencies with the initially intended architecture
are introduced while creating a new implemented drifted
architecture. In this process, drift is caused which has several
possible consequences.

While there exist few studies focusing explicitly on archi-
tectural drift, architectural degeneration and deviation have
received considerable attention [6], [5] with proposals of
various tools to maintain consistency between architecture

● Changing
Requirements

● Feature Creep
● Increasing

Complexity
● Rapid

Software
Evolution

● …

Intended
Architecture

Implemented
Architecture

New Implemented
Drifted Architecture

Inconsistency
Causes

● Quality Degradation
● Maintainability

Issues
● Increased Cost
● Undocumented

Changes
● …

Possible Consequences

Co
ns
ist
en
cy

Fig. 1. Visual summary of architectural drift [4]

and implementation [7], [8], [9]. Focusing on architectural
consistency, there have been multiple studies conducted with
a focus on the perspective of the software architect [3], [10].
Recently, there has been an increased interest in investigating
architectural deviations from the developers’ perspective [11].
As the people who carry out in-situ decisions when implement-
ing and changing code, developers have a significant impact on
architectural drift [12]. Often being part of empowered agile
teams, developers play a central role in the development of
software systems, and is important to investigate architectural
drift from their perspective. They are also often a part of devel-
opment teams and interact with architects and other roles [13].
In this paper, we aim to further understand the developers’
perspective on architectural drift, considering both technical
and non-technical factors. Non-technical factors have con-
siderable importance in the manifestation of deviations [11].
However, technical research on architectural degradation is
the dominant part of published articles [6]. Considering that
drift is a complex and multifaceted phenomenon from the
developers’ point of view, additional empirical research can
contribute to a better understanding of its characteristics.

To investigate how developers reason about and handle
architectural drift, we conducted a mixed-methods study with
11 semi-structured interviewees [14]. Based on the findings
from the interviews, we created a survey and received 63
responses [15]. This work expands on the developers’ per-
spective and further identifies both technical and non-technical
areas. To understand how developers with different levels of

experience can be better supported, we distinguish between
senior and junior developers in our analysis of architectural
drift. We address the following research questions:

• RQ1: What are senior and junior developers’ chal-
lenges regarding architectural drift?

• RQ2: What practices do senior and junior developers
currently use to mitigate architectural drift?

• RQ3: What practices do senior and junior developers
regard as beneficial to mitigate architectural drift?

The study reveals that developers often rely on established
ways of working to detect, address, and prevent architectural
drift and see an advantage in processes and conventions. We
found that junior developers tend to rely more on documenta-
tion, while seniors have a more experience-related approach.
Besides defining clear responsibilities, setting best practices,
and maintaining reliable documentation, it was stressed that it
would be beneficial to document the reasons behind decisions.
At the same time, currently, the documentation of rationales
is often lacking in our participants’ companies.

II. BACKGROUND AND RELATED WORK

The term architectural drift is often used to refer to the
phenomenon of when the implemented architecture deviates
from the intended architecture, in a way that is caused by
insensitivity to the architecture [4]. The intended architecture
refers to the planned, prescriptive, or as-designed architecture.
Usually, it is conceived by software architects and docu-
mented, for example, using UML diagrams. On the other hand,
the implemented architecture represents the as-implemented,
as-built, descriptive, or as-realized architecture [16]. Com-
monly, developers make ad-hoc decisions when implementing
a software system, and their decisions impact how different
components are connected and what architectural decisions
can be found in the implemented system. Several terms have
been used to describe architectural deviation in the literature,
e.g., drift, erosion, degeneration, mismatch, degradation, de-
sign decay, and inconsistency [17], [12], [2], [3], [6], [18].
Wolf and Perry [4] provided two interconnected definitions:
drift, stemming from neglect or insensitivity to the architec-
ture, and erosion, resulting from violations of the architecture.

Architectural drift can hinder the evolution of systems.
Even if recognized, addressing this drift can entail a costly
resolution process [3]. Quality degradation, maintainability
issues, increased cost, and undocumented changes are some
consequences of drift mentioned in literature [3], [19]. Due to
the negative impacts of architectural drift, several methods and
tools have been designed. Connected to both erosion and drift,
Whiting and Andrews identified three strategies to solve them:
organizational competence, proactive methods, and reactionary
methods [19]. Organizational competence is connected to
enabling teams to design high-quality architectures. Its focus
is not only to educate architects but also to make developers
organizationally competent and enable them to perform good
design practice. The strategy of organizational competence
is aligned with the focus of this paper: we investigate the

TABLE I
INTERVIEW PARTICIPANTS (ALL OF WHICH ARE DEVELOPERS).

No Developer
Role

Exp.
(yrs)

Domain Company Size

P1 Fullstack 5 E-commerce A Large
P2 Fullstack 5 Logistics B Medium
P3 DevOps 2 Automotive C Large
P4 Embedded 12 Telecom D Medium
P5 Fullstack 8 Industrial E Micro
P6 Backend <1 Automotive C Large
P7 Backend 20 E-commerce F Small
P8 Fullstack <1 IoT G Medium
P9 Backend 2 Business management H Large
P10 Frontend <1 Automotive I Large
P11 Backend 5 Automotive I Large

developers’ perspective, since they are roles that might be con-
sciously or subconsciously involved with architectural drift.
The second strategy, proactive methods, is related to technical
solutions that help stakeholders design better architectures and
counteract drift in the first place. Those solutions might rely
on NLP techniques or the selection of particular architectural
styles. Reactionary techniques, on the other hand, are supposed
to minimize drift when it occurs. Code comments, static
analysis tools, or conformance checking are examples of
reactionary techniques.

Whiting and Andrews’s classification of strategies was
mainly based on a review of related work. In this paper, we aim
to complement their analysis by presenting empirical evidence
from real companies and developers.

III. RESEARCH METHOD

Given that drift is a complex phenomenon, we opted for
a mixed-methods study with exploratory research questions.
We used a mixed-methods study to get rich qualitative data
from semi-structured interviews and triangulate the data with
responses from a survey. The steps of our method are shown
in Fig. 2. In total, we performed 11 interviews with developers
and a survey that was answered by 63 developers.

Fig. 2. Overview of the research methodology

A. Selection of Interview Participants

In our selection of interview participants, we made use of
purposive sampling [20]. Our selection criteria focused on
interviewees having a minimum of six months of professional
experience as developers. We set the limit to six months to
also include junior developers with some work experience. We
made a concerted effort to include interviewees from different
backgrounds, encompassing various company sizes, domains,
and experience levels. Table I shows an overview of the 11
selected interviewees. The interviewees’ companies are active
within seven different domains including automotive, logistics,
e-commerce, and telecommunication. The participants’ work
experience ranges from six months to 20 years, with an
average of 5.5 years. Among the selected participants, 45%

identify as women, and 55% identify as men. As for the
various company sizes, 6 out of 11 developers work in a large
company, 3 out of 11 work in a medium-sized company, and 2
out of 11 work in a small or micro-sized company, according
to the European classification standard1.

B. Selection of Survey Participants

For the participant selection, we broadly searched for de-
velopers with at least six months of experience in a software
company. We selected the participants using direct contacts
from our professional network and via Facebook groups that
focus on software developers. For the direct contacts, most
of the participants came from Sweden and Italy. For the
Facebook groups, we shared the survey in groups of mixed
nationalities, and in specific groups by language, nationality,
and programming languages, to have a wider sample.

The software developers who responded to the survey have
an average work experience of 7.17 years. We represented
multiple genders, 18% of the participants identify as women,
79% identify as men, and 3% identify as non-binary. As for
the nationality of the participants, 37 are Swedish, 17 are
Italian, four are Spanish, one is Canadian, one is Swiss, one
is from UAE, one is from the UK, and one is from the
Netherlands. Regarding the size of the company where the
developers are working, 46% work in large companies, 24%
in medium-sized companies, 24% in small companies, and 6%
in micro companies, according to the European classification
standard1. The domains in which developers work the most
were automotive, as well as web and mobile applications.

C. Interviews

Before conducting the interviews, we constructed an inter-
view guide [14] where we categorized our questions according
to the research questions. At the start of the interview, we
asked participants what architectural drift is and provided them
with the same definition used in this paper to establish com-
mon ground: “Architectural drift is the phenomenon in which
a software system evolves, gradually moving from an initially
planned architecture to a different unintended architecture.”
We stressed that drift is not caused by direct violations. We
improved the interview guide by incorporating feedback from
two pilot interviews. Those adjustments included clarification
of questions and adding Likert-scale [21] statements to add
complementary data and spark discussions. The interview
guide is included in the supplementary material2.

When we reached out to the participants, we explained
the purpose of the interview and how the data would be
handled. Three participants were provided with the interview
guide before the interviews as this was requested by them.
The interviews were conducted online via video call and
took 40 minutes on average. We recorded the audio of all of
the interviews and manually transcribed them. Before starting
the recording, the participants were assured anonymity and
confidentiality.

1https://single-market-economy.ec.europa.eu/smes/sme-definition
2doi.org/10.6084/m9.figshare.23808087

D. Survey

We created a 15-minute survey using SoSciSurvey3, en-
suring anonymity for all participants. To reduce biases and
increase the validity of the survey, we went through various
iterations. First, we carefully discussed and refined the ques-
tions internally within the research team. In a second iteration,
we consulted two external software developers to refine the
survey [15].

The survey contains exclusively questions and sentences
that we have extrapolated from the interviews, and is used
to validate the data we have collected.

The survey consists of 5 pages. On the first page, we
ask if the respondent writes code in their work and clarify
what we mean by the term drift. We provided the same
definition as the one used in the interviews. Page 2 includes
a series of questions on the challenges that we found in the
interviews. Page 3 contains questions regarding the current
practices that are used by developers for detecting, handling,
and preventing drift, as well as their opinion on who is, or
should be responsible for managing drift. Page 4 of the survey
allows the developer to rate several guidelines that could help
in the management and prevention of drift. The last page of
the survey contains demographic questions. For the creation
of the questions, we used the United Nations Guidelines for
gender-inclusive language [22]. A complete copy of the survey
is included in the supplementary material2.

E. Qualitative Analysis

For this exploratory study, we relied on qualitative data
analysis methods [23]. We used thematic analysis according to
Braun and Clark’s [24], [25] practical guide and followed the
six phases: familiarization with the data (1), coding (2), initial
theme development (3), developing, reviewing, and refining
themes (4), defining and naming themes (5), and writing (6).
Since the research questions in this study are exploratory, we
used mostly an inductive approach to analyze the data. To
verify and refine the analysis, we used a deductive approach
using a priori codes to iterate over the material. The a priori
codes were based on the interview guide and the research
questions. We used semantic coding with a focus on the
explicit content of the data and did not look for any underlying
meanings.

Thematic analysis is a flexible method that can be beneficial
when analyzing different types of interview data, such as semi-
structured or unstructured interviews. It allowed us to identify
the most important themes and sub-themes that we generated
from the data. Thematic analysis also offers transparency as
it allowed us to document the analytical process, making it
easier to evaluate the findings.

1) Inductive phase: We started by familiarizing ourselves
with the data (1). Once the 11 interviews had been recorded,
two of the authors manually transcribed them into text.
Generating initial codes created of a piece of data that was
relevant to answering the research questions (2). The coding

3https://www.soscisurvey.de

was directed by the content of the data. The two first authors
initially coded the data individually while continuously making
notes to decrease bias. Afterwards, we coded using the col-
laborative features of Atlas.ti4. We compared the codes from
the individual coding phase and discussed their meaning for
consistency. We compared the individual results and continued
to search for themes by merging the codes and grouping them.
We continued with searching for and constructing themes by
identifying codes that share common meanings and clustering
those codes together around a central idea (3). To do so we
used the collaborative platform Miro5. We reviewed the themes
by ensuring they answered the research questions (4). Based
on our research questions and the interview guide, we used
our identified themes to search for new codes, and define and
generate descriptive names for the themes (5).

2) Deductive phase: We complemented the six-phase
method with a deductive approach by coding and developing
themes that were directed by existing codes and themes. This
was done to capture excerpts that fit the already existing
codes. Although we ran through earlier steps (1-3), we focused
mainly on refining (4), defining and naming (5), and writing
(6) during this phase. In the last step, we finalized the writing
of this paper and selected quotes that supported our themes
(6). The resulting themes, theme descriptions, codes, and code
descriptions can be found in the supplementary material.

3) Example: To illustrate the coding process of the data,
we provide this quote as an example from P1 (Participant 1):

“We’re [...] trying to get documentation down be-
cause we took over a project from a previous team
and they hadn’t documented much. We’re currently
trying to get that documentation down and figure out
‘what is the architecture?’ [...] and see what changes
we can make without breaking anything.” (P1)

This was initially coded as Unreliable Documentation, In-
herit Project, and Handling Unclear Intent. The interviewee
mentioned that they took over a project and “they hadn’t
documented much” and therefore assigned the code Unreliable
Documentation and Inherit Project. The interviewee also men-
tions “Why is it here?” which we interpreted as not knowing
why certain architectural decisions were made, thus assigning
Handling Unclear Intent. These codes became part of the two
themes Navigation in Uncertainty and Incomplete Documen-
tation which were mapped to the first research question. Our
codebook is available in our supplementary material2.

IV. FINDINGS

We report the findings of our research questions below. Due
to limited space, we will only describe the underlined themes
that we found to be most relevant. The themes created during
the thematic analysis are presented in Tables II, IV, and VII
with their corresponding survey question. Demotivation and
onboarding are general issues in software engineering [26],
[27] and are not directly connected to drift, so we decided

4https://atlasti.com
5https://miro.com

not to investigate these issues further in the survey. For each
category of questions, we divided the answers into totals
(complete number of participants), Junior (Experience < 5
years), and Senior (Experience ≥ 5 years). We also added
the difference in percentage points (pp) between junior and
senior developers. Of the 63 developers who responded to
the survey, 38 are in the senior category, and 25 are in
the junior category. All analysis results can be found in the
supplementary material2.

A. Challenges (RQ1)

Our interview data revealed various challenges which are
presented in Tab. II. The survey results related to developers’
perceived challenges are shown in Tab. III.

Apart from the data shown in those tables, we also asked
the survey respondents what they considered to be the biggest
challenges. 63% answered that prioritizing architecture work
was the most challenging issue.“Incomplete or missing docu-
mentation” was selected by 47%.

Seniors and juniors have different views regarding the most
relevant challenges. Senior developers consider prioritization
and the lack of architectural knowledge as most critical. Junior
developers consider documentation as more crucial.

In the following, we describe selected challenges in further
detail.

1) Prioritization: When considering all of the different
constraints and objectives of an organization, it often ends
up being a challenge for the developers to prioritize archi-
tectural work. Business and engineering objectives do not
always align, creating a misalignment of expectations and
resulting in developers having to prioritize one over the other.
P7 (Participant 7) describes how prioritizing often results in
engineering practices, such as documentation, being neglected:

“[We ask ourselves] ‘should we document or de-
liver?’ and the focus is always on delivery. Then
you abandon the documentation. That almost always
happens.” (P7)

The fact that 63% of the survey respondents consider prior-
itization the most challenging issue indicates that companies
need to establish aligned priorities. Prioritizing architectural
consistency is important to many respondents. 68% of the
participants in the survey agreed or strongly agreed with the
statement that “keeping the code aligned with the intended
architecture is a priority for my team”.

2) Allocated resources: The developers’ work is directly
impacted by business constraints, objectives, and allocated re-
sources, leading to challenges in mitigating architectural drift.
P11 explained: “It never depends on the software developer.
It always depends on the budget and what the business has in
consideration”. This is echoed by other interviewees and P9
explained that sometimes documentation is not prioritized by
customers, partially because of the budget: “Some customers
don’t value documentation and then we don’t write documen-
tation.”

To save time by doing things quickly and delivering within
a certain time frame, developers sometimes deviate from

TABLE II
CHALLENGES NAMED IN THE INTERVIEWS WITH ASSOCIATED SURVEY QUESTION(S). UNDERLINED PRACTICES ARE EXPLAINED IN DETAIL.

Theme Description Representative Quote Survey Question
Prioritization Relates to challenges related to prioritization between

business and engineering objectives in the developer
team.

“The architecture can change over time [...] due to pressure from the
business side. It’s the eternal struggle between product and engineering:
we have to build features now, and we want to release them quickly and
[not compromise the quality of the code].” (P2)

2

Allocated
resources

Refers to challenges related to resources allocated to
developers (e.g., lack of time and budget constraints).

“There I chose to depart from the architecture [...] because it started to
become deadline critical.” (P9)

3

Inexperience Challenges related to mitigating drift due to lack of
working experience or being newly hired.

“If you are new to an undocumented project like I am, the structure is
more of a mystery than anything else.” (P1)

5

Demotivation The motivation of developers and its effect on the
architecture.

“You want motivated developers who enjoy working. If you don’t have
that, the quality won’t be so good either.” (P7)

N/A

Incomplete
documentation

Challenges related to documentation being incomplete
(e.g., it is outdated, lacks information, or does not
accurately reflect the current implementation).

“There is a lot of documentation, but it is sometimes several years old
and completely out of date. That’s been one of the big problems since I
started, that nothing [in the code] matches the documentation.” (P7)

9 & 4

Navigation in
uncertainty

Relates to challenges developers experience when
making decisions based on assumptions (e.g., because
of lack of information or knowledge).

“You learn things along the way and the implementation just doesn’t turn
out the way you intended. [...] you’ve added a few features and realize
that it doesn’t scale at all and we can’t read what we’re doing anymore.”
(P2)

6

Flawed
communication

Refers to challenges related to written and verbal
communication within and between teams in relation
to drift.

“The communication can be very challenging. [...] Drift is much easier
to discuss in a mature team where everyone is comfortable with each
other.” (P2)

7

Issues in
implemented code

Challenges that are related to the code implementation,
e.g., difficulties extending, testing, and reading the
code.

“We had to add a new feature, but could not extend the code. We had to
modify some of the code changes because the code was becoming too
complex to test and maintain.” (P11)

10

Difficulties
onboarding

Refers to challenges onboarding new team members. “Onboarding new members can be tricky if there is a drift in the
architecture. We cannot rely on the documentation so [new developers]
can’t get up to date with the current state of the art of the system.” (P4)

N/A

the intended architecture. P9 explained:“There I chose to
depart from the architecture [...] because it started to become
deadline critical”. On a question on how to manage drift, P8
mentions restricted time as a factor: “It depends on deadlines
and the people responsible”.

59% of survey participants stated that they deviate from the
intended architecture due to a lack of time. Senior developers
agree more (47%) with the statement compared to junior
developers (32%), which indicates that senior developers are
more aware of the effort-benefit tradeoff that comes with
counteracting drift.

3) Incomplete documentation: Several interviewee partici-
pants mentioned the challenge of documentation being incom-
plete. P1 described inheriting a code base and highlighted the
difficulties of working with a system without comprehensive
knowledge of its underlying design principles:

“We don’t know why the architecture looks the way
it does and we don’t always know how it works so
much of what we do is to try to be very careful to
avoid breaking it.” (P1)

Several developers mentioned inheriting projects, from an-
other group of developers, without sufficient documentation as
being especially challenging. P7 stated:

“They never documented anything either. [...] It was
a big problem that the documentation was extremely
poor.” (P7)

P2 talked about the challenge of losing relevant knowledge:
“If a person leaves, that information disappears.
[...] I specifically think about information of which
other systems our system communicates with, what
architectural decisions have we made, and why we
made them.” (P2)

When asked what they see as the biggest challenge with
drift, 60% of the junior developers selected “incomplete or
missing documentation”. Among the senior developers, it was

TABLE III
SURVEY RESPONDENTS AGREEING WITH STATEMENTS ON CHALLENGES.

Statement Total Junior Senior Difference
1. “My team shares a common understanding
of the intended architecture.”

77% 80% 76% 4pp

2. “Keeping the code aligned with the in-
tended architecture is a priority for my team.”

68% 64% 71% -7pp

3. “Sometimes, I don’t follow the intended
architecture because it would take me too
much time.”

41% 32% 47% -
15pp

4. “Having bad quality documentation in-
creases the likelihood that the implementation
deviates from the intended architecture.”

85% 88% 84% 4pp

5. “I believe that more experienced developers
mitigate architectural drift better than less
experienced developers.”

74% 78% 71% 7pp

6. “Sometimes, when writing code, I im-
provise and make assumptions on what the
architecture should look like.”

69% 60% 75% -
15pp

7. “Sometimes, it’s a problem for us that we
don’t talk about architectural decisions.”

89% 83% 92% -9pp

8. “I think it is a problem if the code deviates
from the intended architecture.”

73% 76% 71% 5pp

9. “Having outdated documentation is a big
problem for us.”

64% 72% 58% 14pp

10. “Architectural drift creates quality issues.” 66% 68% 65% 3pp

selected as the top challenge by 39%. According to our
findings, senior developers generally consider communication
as more relevant than documentation. This insight is also
reflected in the data shown in Tab. III. 88% of the developers
stated that “having bad quality documentation increases the
likelihood that the implementation deviates from the intended
architecture”. Compared to senior developers, junior devel-
opers consider outdated or incomplete documentation more
problematic.

4) Navigation in uncertainty: During the initial (re-)design
of an architecture, there is a high degree of uncertainty and a
lot of assumptions have to be made. Developers also make
assumptions in situations where they do not have accurate
architectural information available and lack an understanding
of the intentions behind architectural choices. Our participants
described that they commonly make architectural decisions
and implement the architecture based on assumptions. P2

explained this issue as follows:
“You might have an idea that ‘yes, but this pattern
will work really well’, then a few months go by
and you’ve added a few features and realize that
it doesn’t scale at all and we can’t read what we’re
doing anymore.” (P2)

P6 mentioned that new insights could change the require-
ments and that leads to “[...] a quite big drift from the
initial draft of plans”. More senior developers report that they
improvise (75%) compared to junior developers (60%).

5) Issues in implemented code: Issues in implemented code
encompass various challenges that the developers mentioned
they encounter in their work. These issues include bugs,
increased complexity, increased difficulty in testing, and dete-
riorated readability. P2 described the consequences of a drifted
implementation based on assumptions made early on:

“We sprinkled customer-specific logic everywhere
which made the code very difficult to work with in
the end. The bugs that originated from that system
became incredibly difficult to fix.” (P2)

Furthermore, P9 stated: “I would say that the challenges lie
in the difficulty of code maintenance and troubleshooting”.

6) Flawed communication: Several interviewees brought
up the difficulty in communication. Miscommunication can
lead to information not being shared. P1 stated: “I often
find that communication is the problem in many situations—it
fails.” Developing in isolation without input from others was
raised by interviewee P9: “But in my company, we work too
loosely and independently with architecture.” P2 stated:

“The communication can be very challenging. [...]
Drift is much easier to discuss in a mature team
where everyone is comfortable with each other.” (P2)

89% of the survey respondents indicated that it sometimes
is a problem for them that they don’t talk about architectural
decisions. More senior developers (92%) think that this is a
problem compared to junior developers (83%).

Summary (RQ1): We conclude that the lack of documen-
tation is a prevalent challenge, followed by other issues such
as communication. Junior developers perceive documentation
as more important than seniors, who consider communication
as critical and are more willing to improvise architectural
decisions to save time.

B. Current Practices (RQ2)

Our findings on current practices from the interviews are
presented in Tab. IV. Tab. V and VI show the survey responses
regarding the currently used practices. It can be seen that there
are differences between junior and senior developers. More
senior developers (62%) than junior developers (42%) agree
with the statement that “architectural Drift is acceptable”.
Junior developers, on the other hand, more commonly agree
with the statement that they “have sufficient practices in place
to handle architectural drift” (75%) in comparison to senior
developers (57%). These findings indicate that the level of
experience changes developers’ perceptions of drift.

According to the survey, the most used practice to detect
and prevent drift is “reviewing other people’s code” and
“sharing information with others”. Senior developers tend
more to work alone with the code to detect and prevent
drift than junior developers (42% and 32%, respectively).
Overall, 11% of the respondents report that they don’t have
a dedicated practice. Junior developers more commonly state
that they do not have any dedicated practices than senior
developers (16% and 8%, respectively). In the interviews, none
of the participants mentioned that they use dedicated tools to
counteract architectural drift.

1) Practices to detect and prevent drift: Developers con-
sider themselves to be aware of when drift occurs. As seen in
Tab. VI, when asked to agree or disagree with the statement “I
am aware when the code drifts from its intended architecture”,
87% of the respondents agreed or strongly agreed. Interviewee
participant P4 commented on the matter: “[...] I would say that
I am not aware at that moment, I eventually become aware at
some other time in the future.” Different practices are used to
detect and prevent drift:

a) Code reviews: Multiple participants mentioned code
reviews as a way to both detect and prevent architectural drift.
Code reviews were especially emphasized by the interviewees
as a key practice. P2 explained how drift is detected: “I
believe that it could be either because I have implemented
something myself or when I’m reviewing a pull request.”.
Another example is:

“I rely on the manual eye and place a lot of emphasis
on code reviews because that’s where a lot [of
deviations] can be caught.” (P1)

73% of the survey participants state that they review other
people’s code to detect and prevent drift.

b) Implementing code: Developers described difficulty
implementing and extending code as a way to become aware
of drift:

“As a developer, it’s when I feel that I have to
forcefully incorporate functionality into my code.
[...] Then it’s something that the architecture no
longer supports.” (P2)

38% of the survey respondents report that they detect
or prevent drift when working with the code. More senior
developers work alone with the code to detect and prevent
drift than junior developers.

c) Discussions: Discussions have a role in preventing
drift. P8 mentioned discussions as a way to prevent drift by
ensuring awareness and commented on implemented architec-
ture diverging from the intended architecture:

“Well, I don’t know if it’s unintentional because you
always make some decision. [...] There is always a
discussion.” (P8)

Tab. VI indicates that 68% of the survey participants
reported that sharing information with others is a practice
currently used to prevent and detect drift.

2) Practices to address drift:

TABLE IV
PRACTICES NAMED IN THE INTERVIEWS WITH ASSOCIATED SURVEY QUESTION(S). UNDERLINED PRACTICES ARE EXPLAINED IN DETAIL.

Current Practice Description Representative Quote Survey Question
Practices related to detecting and preventing drift
Established way of
working

Following and relying on an established way of work-
ing to detect architectural drift (e.g., Scrum).

“As a developer, we will have some idea because we take part in the
backlog refinement and the meetings with our product owner [...] so we
definitely know that it is happening.” (P3)

1 (Tab. VI)

Code reviews Detecting and preventing drift when systematically
reviewing other people’s code.

“I rely on the manual eye and place a lot of emphasis on code reviews
because that’s where a lot [of deviations] can be caught.” (P1)

1 (Tab. V)

Implementing code Detecting drift while working with the code (e.g.,
implementing a new feature).

“You start seeing things that don’t make sense. You see this either in
an architectural document or you see it in the code: something does not
make sense and does not correspond to what it should be.” (P4)

2 (Tab. V)

Discussions Discussions that involve collaborative conversations
among team members can serve as a preventative
practice.

“In a way, the discussions themselves are a practice. [...] I think the
discussions in a way are there to, not only promote, but also to discourage
certain drifts maybe.” (P6)

3 (Tab. V)

Dedicated time Dedicate time for maintenance and fixing technical
debt as a way to prevent drift from occurring.

“Sometimes when we’re building features, we take certain technical
shortcuts and accumulate technical debt. The first thing we do afterwards
is to actually fix the technical debt we created.” (P2)

4 (Tab. V)

Integrated into
release cycle

Preventing drift by checking the consistency between
code and architecture as part of the release cycle.

“[Documentation] was an integral part of the release cycle itself. The
documentation was good there.” (P7)

5 (Tab. V)

Practices used to address drift
Communication Relates to relying on communication and reaching out

to another person, either directly or during reoccurring
meetings (e.g., daily standups).

“Normally it is during standups and basic communication: we just talk
with each other.” (P8)

“Do you use any prac-
tices to address drift in
your team?”

Establishing practices
Lack of practices A lack of dedicated practices to detect, prevent and

address architectural drift.
“I wouldn’t say that there is a routine around it, more like conventions.”
(P7)

6 (Tab. V)

Part of the process Drift is seen as a part of the development process. “Discovering that it’s not aligning anymore, it’s something that evolves
throughout the project. I don’t think there is a single point that says
‘Wow, this is outdated’.” (P8)

3 & 4 (Tab. VI)

TABLE V
CURRENTLY USED PRACTICES - survey respondents who selected a practice.

Currently used practices Total Junior Senior Difference
1. “Reviewing other people’s code (e.g.,
through code reviews).”

73% 68% 74% -6pp

2. “Working with the code myself.” 38% 32% 42% -10pp
3. “Sharing information with others (e.g.,
in team discussions).”

68% 64% 71% -7pp

4. “Dedicating time to fix accumulated
technical debt.”

56% 57% 55% 2pp

5. “Checking consistency between code and
architecture as part of our release cycle.”

19% 16% 21% -5pp

6. “We do not have any dedicated prac-
tices.”

11% 16% 8% 8pp

TABLE VI
ACCEPTABILITY AND AWARENESS - survey respondents who

agreed/strongly agreed with a statement.

Current practices Total Junior Senior Difference
1. “We have sufficient practices in place to
handle architectural drift.”

64% 75% 57% 18pp

2. “I am aware when the code drifts from
its intended architecture.”

87% 83% 89% -6pp

3. “Architectural drift is inevitable in soft-
ware development.”

65% 61% 68% -7pp

4. “Architectural drift is acceptable.” 54% 42% 62% -20pp
5. “Architectural drift creates quality is-
sues.”

66% 68% 65% 3pp

a) Communication: More than 50% of the interviewees
address drift by relying on communication, either directly
or during reoccurring meetings (e.g., daily standups). P4 ex-
pressed: “Depending on the situation I would talk to different
people.” P1 also stressed the importance of intentions and
stated: “I speak with the developer who made that code change
[...] and ask: ‘Why did you choose to make this change?”.
Moreover, P2 stressed that the issue raised is not equal to a
resolution of the problem:

“The first thing I do is just talk to the person [...]
Maybe we’ll come up with how we want to change
things, or maybe we won’t come to a conclusion.”
(P2)

3) Establishing practices:
a) Lack of practices: 64% of the survey respondents

reported that they have sufficient practices in place to handle
drift. 11% of the survey respondents stated that they do not
have any dedicated practices to detect or prevent drift. In some
cases, our data still suggest that there is no dedicated practice
in place to detect, prevent, or address drift. For example:

“[...] It is handled by spending more time on trou-
bleshooting and reading code to understand it [...].
I don’t think there is a good procedure for us; it just
becomes a more challenging job.” (P9)

P5 stated: “I don’t know other than trying to establish
standards and communicate them”. P7 articulated: “I wouldn’t
say that there is a routine around it, more like conventions.”

b) Part of the process: Our research indicates that drift is
an integral part of the development process, and its detection is
not feasible at a particular point in time, as it emerges through
continuous discussions and communication. P6 emphasized
that drift is gradual:

“We know when drift is happening because we are
talking about what we would potentially want to do
and discussing this as a team. [...] It’s a gradual
change [...].” (P6)

Another example suggesting that developers view drift as
gradual, also expresses that drift is first discovered when the
code has become rigid:

“I think we are a part of it, it’s not like we wake up
one day and say: ‘Okay, the architecture has drifted’.
It’s more like we are a part of it because in every
sprint we have discussions.” (P11)

Tab. VI shows how 65% of the participants agree that drift
is inevitable and 54% report that drift is acceptable.

Summary (RQ2): We found that a majority of participants
consider themselves to be aware of drift. Reviewing code is

Fig. 3. Survey responses on the guidelines’ value (n=63)

one of the main practices to detect drift. More seniors than
juniors consider drift to be inevitable and acceptable.

C. Supporting Practices (RQ3)

We conceived supporting practices to mitigate drift, which
are presented in Tab. VII. Based on our findings, we proposed
9 guidelines, which are shown in Fig. 3. It can be seen that
the respondents consider it particularly valuable to document
reasons for architectural decisions (G2) and define best prac-
tices (G7). The data concerning the difference between senior
and junior developers can be found in the supplementary
material2. Junior developers tended to consider the guidelines
more valuable compared to senior developers. They rate G3
(reserve development time to counteract drift) and G5 (add
drift-related aspects to the Definition of Done criteria) much
higher than senior developers (26 and 20 percentage points,
respectively), making these the two guidelines with the largest
difference between senior and junior developers.

Below, we describe selected themes in further detail.
1) Defined responsibility: During the interviews, multiple

participants brought up having defined responsibility as a
supporting approach. 53% of the survey respondents regarded
it very valuable or extremely valuable to define responsibilities
for handling architectural drift. At the same time, opinions
differ on who should be responsible for managing architectural
drift. The responsibility for drift is mostly viewed as a team
effort. As shown in Tab. VIII, our survey respondents stated
that the responsibility for drift should lie with the software
architects and the development team, while the product owner
always remains at the bottom of the ranking. 47% of the
senior developers thought that they should be responsible
for drift, whereas 32% of the junior developers considered
senior developers to be the ones who should be responsible
for handling architectural drift. More junior developers than
senior developers thought that the product owner should be
responsible for handling architectural drift. P9 expanded on
their view: “I think it’s not the responsibility of the individual
developer, it’s the responsibility of the solution manager”. P2
thinks it is a team responsibility:

“It’s very important that we as a team are col-
lectively responsible [for the architecture] and say:
‘This is our problem’.” (P2)

2) Set best practices: One of the challenges we found in the
interviews was that organizations do not always have estab-
lished mechanisms to detect, prevent, and manage architectural
drift. In the survey results shown in Fig. 3, it can be seen that

77% of the survey respondents found it very valuable or ex-
tremely valuable to define best practices. Multiple participants
mentioned the importance of organizational support for best
practices and a need for common standards. P9 noted that they
would like to have a more standardized way of working with
architecture within their company: “I would probably say that
we should have one kind of standard on which we base our
solutions.”

While P9 suggests that those standards should be decided
by an architect, P2 instead suggests it should be decided by
the teams:

“The teams work together to raise these common
[practices] and set best practices [...]. Then, as the
company changes over time, the team’s architecture
will change over time and then it will automatically
ensure that best practices are updated over time.”
(P2)

3) Foster good collaboration: Many interviewees men-
tioned good collaboration as important to mitigate drift. This
includes building trust between different roles, continuous
communication, and regular feedback. P2 stated:

“It’s about continuously fostering a dialogue of
understanding, helping one another, and primarily
relying on each other.” (P2)

P1 stressed the importance of feedback and communication:
“Talk to each other in a team. Don’t just get code
reviews but you actually discuss the projects you’re
working on while you’re doing it.” (P1)

Establishing a community of practice to share knowledge
is considered valuable by the participants. The survey results
show that 67% rated G6 (creating a community for knowledge
sharing) as very or extremely valuable. Sharing knowledge
about the rationales behind architectural decisions was consid-
ered particularly relevant. 85% of the respondents considered
G2 (document reasons) very or extremely valuable.

4) Maintain reliable documentation: Maintaining reliable
documentation is an important supporting practice for mit-
igating drift. Capturing information about why a decision
was made and by whom is especially helpful for developers.
85% of the survey participants found G2 a valuable practice,
making it the guideline that was considered most valuable,
especially among junior developers. One developer stated:

“It would be good if we had some additional docu-
mentation on why we took certain decisions.” (P6)

Having documentation as an integrated part of the release
cycle was brought up as an example of a practice to maintain
good and complete documentation. According to our findings,
53% agree that G5 “Adding architectural concerns to the Def-
inition of Done criteria” would be very valuable or extremely
valuable.

Summary (RQ3): We conclude that especially document-
ing reasons behind architectural decisions (G2) and defining
best practices (G7) were considered valuable by the partic-
ipants. Juniors consider it more useful than seniors to add

TABLE VII
SUPPORTING PRACTICES WITH QUOTES AND RELATED GUIDELINES IN THE SURVEY. UNDERLINED PRACTICES ARE EXPLAINED IN DETAIL.

Practice Description Representative Quote Survey
Defined responsibility Refers to how clearly defined responsibilities can help

organizations to mitigate drift.
“It’s very important that we as a team are collectively responsible [for the
architecture] and say: ‘This is our problem’.” (P2)

G9

Set best practices Refers to having common best practices for developers
on an organizational level (e.g., best practices set by
developers or communicated to developers).

“I would probably say that we should have one kind of standard on which we
base our solutions. If we know that we have a few different solutions that are
similar, we should build them in a similar way so that we have different cases
that can be reused and therefore can be managed.” (P9)

G7

Increased technical com-
petency

Refers to increasing technical competency of business
stakeholders.

“I usually want the [business] stakeholder to have higher technical competence.”
(P7)

G1

Mirror communication
structure to intended
architecture

Refers to acknowledging that the organizational struc-
ture (e.g., the setup of teams and communication paths)
impacts how the architecture is implemented and can
be used deliberately by practitioners to their advantage.

“[...] you think about how we want our architecture and set up the teams
accordingly. That’s a very interesting thing that I think more companies should
follow.” (P2)

G8

Foster good
collaboration

Refers to good collaboration (e.g., trust between dif-
ferent roles, feedback, and continuous communication
and discussions) as important to mitigate drift.

“To actually talk to each other in a team. That you don’t just get code reviews
but you actually discuss the projects you’re working on while you’re doing it.
Because someone else’s opinion can be very useful.” (P1)

G6 & G4

Maintain reliable
documentation

Refers to documentation as an important practice to
mitigate drift. Capturing information about why a
decision was made and by whom is especially helpful
for developers.

“I would honestly want to have more documentation on it. [...] But anyone who
gets onboarded might not understand how we got to this point, and it would be
good if we had some added documentation on why we took certain decisions.”
(P6)

G2

TABLE VIII
RESPONSIBILITY - survey respondents’ role selections.

Statement Total Junior Senior Difference
Who is currently responsible for handling architectural drift?
1. The individual developer 38% 40% 37% 3pp
2. The development team 57% 56% 58% -2pp
3. Senior developers 33% 28% 37% -9pp
4. Product owner 3% 8% 0% 8pp
5. The software architect(s) 52% 56% 50% 6pp
Who should be responsible for handling architectural drift?
1. The individual developer 36% 40% 34% 6pp
2. The development team 70% 72% 68% 4pp
3. Senior developers 41% 32% 47% -15pp
4. Product owner 19% 24% 16% 8pp
5. The software architect(s) 71% 68% 74% -6pp

drift-related concerns to the Definition of Done criteria and to
reserve time to identify and counteract drift.

V. DISCUSSION

This study sheds light on architectural drift, challenges
connected to it, and current and potential ways to detect,
mitigate, and address it. Some of our insights confirm previous
findings. That is not surprising and not the goal of empirical
research, where we aim to provide evidence on the practices
used in industry. To the best of our knowledge, no empirical
study has been published that focuses on the developers’
perspective on architectural drift.

a) Prioritization and the role of agility: A majority of
the survey respondents (66%) stated that architectural drift
creates quality issues. Fewer junior developers than senior
developers stated that drift is acceptable. The participants
of our study consider it important to keep the code aligned
with the intended architecture. Overall, only 41% of the
survey respondents stated that they deviated from the intended
architecture due to a lack of time. To some extent, this
finding contradicts previous research where a lack of time,
resources, and knowledge are given as reasons for architectural
inconsistencies [10]. Related work suggests that using iterative
software development processes can contribute to architectural
drift [9], [18]. While we did not find that agile processes
are problematic per se, we did see issues connected to the
difficulty of prioritizing architectural work over business-
driving objectives. Instead of framing issues as being due to

a lack of time, our respondents stressed the importance of
prioritization.

b) Existence of architectural documentation: While all
participants in this study had some mechanisms to capture
the intended architecture, many organizations do not have for-
mal architectural descriptions. Descriptions can be whiteboard
pictures, documents, or models. According to our findings,
even if the description does not exist, companies tend to have
an original intention. In that case, drift may still exist and is
visible in the implementation that deviates from this intention
over time.

c) Tools for architectural drift: Despite numerous pro-
posed formal approaches and tools [9], [12], [2] to achieve
architectural consistency, we found that most practices used in
the industry are informal. While a previous study on architec-
tural consistency found that some practitioners use tools like
SonarQube [3], we did not find a company using similar tools.
Related to architectural erosion, previous research [9] suggests
that the detection of deviations is particularly challenging.

d) Awareness: Our findings also indicate that there cur-
rently is a notable risk associated with the practices that are
used to detect drift, as they heavily depend on the specific
developer’s experience and level of awareness. While previous
work suggested that developers tend not to be aware of the
architectural impact of changes in code reviews [28], the
majority (88%) of our respondents agreed or strongly agreed
with the statement “I am aware when the code drifts from its
intended architecture”. This finding indicates that it is difficult
to state how aware one is of potentially unknown things like
drift. Moreover, some developers might view drift as gradual
and a process that they are a part of.

We also found that although practitioners regard it as ben-
eficial to document reasons behind decisions, few participants
follow that practice. This might be due to the difficulty of
formulating rationales, which is why the importance of this
practice needs to be stressed.

e) Differences between junior and senior developers: We
found that the way junior and senior developers reason about
architectural drift is quite different. We found that although
developers accept the inevitability of drift, especially junior

developers appreciate practices that enable them to mitigate it.
Our proposed guidelines can aid practitioners in this regard.
Juniors tend to rate our guidelines higher than seniors.

f) Practices to deal with drift: Several practices were
suggested and are currently followed to deal with architectural
drift. It should be noted that these practices are rather general
and high-level. Given that dealing with software architecture is
very context- and system-specific, they need to be tailored to
individual organizations. We acknowledge that their reported
usefulness in this paper is based on the perceptions of our
11 interviewees and 63 survey respondents and that long-
term studies are needed to better understand how drift can be
detected, mitigated, and addressed in practice. The guidelines
rated as the most useful are documenting reasons behind
architectural decisions (G2) and defining best practices on
an organizational level (G7). These findings indicate that
practitioners see a need to establish organizational and doc-
umentation practices for drift, rather than to only focus on
technical tools and solutions [6]. Some of our guidelines
can help to support developers to become more aware of an
evolving architecture over time. The guidelines to document
rationales and to define best practices might be a first step,
so that drift can be addressed and evolution can happen in a
controlled way.

A. Threats to Validity

In the following, we discuss threats to validity [29], [30].
1) Construct validity: We strove to ensure that the construct

of architectural drift was well-defined. We achieved this by
conducting a thorough review of the literature. The interview
guide included questions regarding the participants’ own def-
inition of drift and the interviewers also provided a definition
of drift. Similarly, the survey contained a definition of drift.
We provided the definition to avoid confusion and establish a
common understanding of the concept.

2) External validity: The purpose of this mixed-methods
study is to identify a localized truth and not to search for gen-
eralizable results. The sample of participants is still a crucial
factor. To improve external validity, we included participants
working across diverse software companies and domains, and
varying levels of experience.

3) Reliability: To ensure that the study can be replicated,
we uploaded supplementary material2, such as the interview
guide. We expect that by using this material, it will be possible
for other researchers to replicate the study. We described
the decisions and steps taken during the data collection and
analysis to ensure transparency.

In qualitative studies like this one, there is a threat that the
questions in the interviews may not have been well-phrased
or we as interviewers might have unconsciously influenced
the interviewee’s answers. To mitigate this threat, we aimed
to create short and clear questions. We also ran two pilot
interviews to capture potential issues.

To minimize bias in the analysis, the first two authors
conducted the inductive phase of the thematic analysis individ-
ually. Then, they compared their codes and notes and discussed

any disagreements. The codebook with descriptions of all
themes and codes is provided in the supplementary material.
We aimed to work consistently with the codebook throughout
the analysis. In a final iteration of the coding process, the
researchers went through the data again and double-checked
that the codes were correctly and consistently applied. To
reduce the potential influence of personal beliefs on data
interpretation, we employed triangulation, by validating data
collected during the interviews with a survey [31].

VI. CONCLUSIONS AND FUTURE WORK

Our findings provide insights into how developers perceive
drift. They consider it important to prioritize architectural
consistency and talk about architectural decisions. Junior de-
velopers see a higher value in documentation, whereas senior
developers consider communication and discussions more cen-
tral. Based on our analysis of the current state, we explored
several practices that can help developers to identify and
counteract drift. Given the complexity of drift, we suggest that
practitioners consider drift from multiple perspectives, both
technical and non-technical. There exist different opinions
regarding who is and who should be responsible for handling
architectural drift, with the majority of the respondents stating
that the responsibility should lie with the development team
and software architect(s).

Our study sheds light on the many challenges and per-
ceptions that exist around architectural drift. We believe our
study can be a starting point to provide greater awareness and
useful tools to prevent and combat architectural drift, both
for software developers and architects. Developers often use
informal practices to manage drift. Our research highlights
the need for evaluating strategies, emphasizing collaboration,
clarifying responsibilities, and enhancing technical expertise
to tackle drift successfully.

Researchers can build upon these findings and identify how
the guidelines can be customized to specific contexts. Future
directions are to investigate lightweight mechanisms to help
practitioners to document reasons for architectural decisions,
share knowledge, and do code reviews with a focus on drift.

We would like to further refine our proposed guidelines and
conduct a longitudinal study on the effects of applying them
in industrial settings. One interviewee stressed that tools to
create documentation automatically would be beneficial. At the
same time, there are no established state-of-the-practice tools
that help companies to mitigate architectural drift. It would be
interesting to better understand what the reasons are and how
tools could address practitioners’ needs in the future.

ACKNOWLEDGMENTS

We would like to thank all participants for their invaluable
support. This work was partially supported by the Wallenberg
AI, Autonomous Systems and Software Program (WASP)
funded by the Knut and Alice Wallenberg Foundation, and
by Stiftelsen C.M. Lerici Foundation.

REFERENCES

[1] M. Nagl, “The architecture is the center of the software development
process,” RWTH Aachen, Tech. Rep. AIB-2021-08, Nov. 2021,
accessed on February 26, 2024. [Online]. Available: http://publications.
rwth-aachen.de/record/835237/files/835237.pdf

[2] L. De Silva and D. Balasubramaniam, “Controlling software architecture
erosion: A survey,” Journal of Systems and Software, vol. 85, no. 1, pp.
132–151, 2012.

[3] N. Ali, S. Baker, R. O’Crowley, S. Herold, and J. Buckley, “Architec-
ture consistency: State of the practice, challenges and requirements,”
Empirical Software Engineering, vol. 23, pp. 224–258, 2018.

[4] D. E. Perry and A. L. Wolf, “Foundations for the study of software
architecture,” ACM SIGSOFT Software Engineering Notes, vol. 17, no. 4,
pp. 40–52, 1992.

[5] L. Hochstein and M. Lindvall, “Combating architectural degeneration:
a survey,” Information and Software Technology, vol. 47, no. 10, pp.
643–656, 2005.

[6] S. Herold, M. Blom, and J. Buckley, “Evidence in architecture degra-
dation and consistency checking research: preliminary results from a
literature review,” in Proccedings of the 10th European Conference on
Software Architecture Workshops, 2016, pp. 1–7.

[7] J. Buckley, S. Mooney, J. Rosik, and N. Ali, “JITTAC: A just-in-
time tool for architectural consistency,” in Proceedings of the 35th
International Conference on Software Engineering (ICSE’13), 2013, pp.
1291–1294.

[8] D. Ganesan, T. Keuler, and Y. Nishimura, “Architecture compliance
checking at runtime: An industry experience report,” in Proceedings of
the 8th International Conference on Quality Software, 2008, pp. 347–
356.

[9] R. Li, P. Liang, M. Soliman, and P. Avgeriou, “Understanding software
architecture erosion: A systematic mapping study,” Journal of Software:
Evolution and Process, vol. 34, no. 3, p. e2423, 2022.

[10] R. Wohlrab, U. Eliasson, P. Pelliccione, and R. Heldal, “Improving the
consistency and usefulness of architecture descriptions: Guidelines for
architects,” in Proceedings of the IEEE International Conference on
Software Architecture (ICSA’19). IEEE, 2019, pp. 151–160.

[11] R. Li, P. Liang, M. Soliman, and P. Avgeriou, “Understanding archi-
tecture erosion: The practitioners’ perceptive,” in Proceedings of the
IEEE/ACM 29th International Conference on Program Comprehension
(ICPC’21). IEEE, 2021, pp. 311–322.

[12] A. Baabad, H. B. Zulzalil, S. Hassan, and S. B. Baharom, “Software
architecture degradation in open source software: A systematic literature
review,” IEEE Access, vol. 8, pp. 173 681–173 709, 2020.

[13] N. B. Moe, D. Šmite, M. Paasivaara, and C. Lassenius, “Finding the
sweet spot for organizational control and team autonomy in large-scale
agile software development,” Empirical Software Engineering, vol. 26,
no. 5, p. 101, 2021.

[14] C. Wilson, “Chapter 2 - semi-structured interviews,” in Interview Tech-
niques for UX Practitioners, C. Wilson, Ed. Boston: Morgan Kaufmann,
2014, pp. 23–41.

[15] A. N. Ghazi, K. Petersen, S. S. V. R. Reddy, and H. Nekkanti, “Survey
research in software engineering: Problems and mitigation strategies,”
IEEE Access, vol. 7, pp. 24 703–24 718, 2019.

[16] J. B. Tran and R. C. Holt, “Forward and reverse repair of software
architecture,” in Proceedings of the Conference of the Centre for
Advanced Studies on Collaborative Research, S. A. MacKay and J. H.
Johnson, Eds. IBM, 1999, p. 12.

[17] J. Rosik, A. Le Gear, J. Buckley, M. A. Babar, and D. Connolly,
“Assessing architectural drift in commercial software development: a
case study,” Journal of Software: Practice and Experience, vol. 41, no. 1,
pp. 63–86, 2011.

[18] J. van Gurp and J. Bosch, “Design erosion: Problems and causes,”
Journal of Systems and Software, vol. 61, no. 2, pp. 105–119, Mar.
2002.

[19] E. Whiting and S. Andrews, “Drift and erosion in software architecture:
Summary and prevention strategies,” in Proceedings of the 4th Interna-
tional Conference on Information System and Data Mining, ser. ICISDM
2020. New York, NY, USA: Association for Computing Machinery,
2020, p. 132–138.

[20] S. Baltes and P. Ralph, “Sampling in software engineering research: A
critical review and guidelines,” Empirical Software Engineering, vol. 27,
no. 4, p. 94, 2022.

[21] J. Robinson, Likert Scale. Dordrecht: Springer Netherlands, 2014, pp.
3620–3621.

[22] U. N. (UN). (2024) Guidelines for gender-inclusive language in English.
Https://www.un.org/en/gender-inclusive-language/guidelines.shtml. Ac-
cessed on February 26, 2024.

[23] C. B. Seaman, “Qualitative methods in empirical studies of software
engineering,” IEEE Transactions on Software Engineering, vol. 25, no. 4,
pp. 557–572, 1999.

[24] V. Braun and V. Clarke, Thematic analysis. American Psychological
Association, 2012.

[25] ——, “Reflecting on reflexive thematic analysis,” Qualitative Research
in Sport, Exercise and Health, vol. 11, no. 4, pp. 589–597, 2019.

[26] C. de O. Melo, C. Santana, and F. Kon, “Developers motivation in agile
teams,” in Proceedings of the 38th Euromicro Conference on Software
Engineering and Advanced Applications. IEEE, 2012, pp. 376–383.

[27] A. Ju, H. Sajnani, S. Kelly, and K. Herzig, “A case study of onboarding
in software teams: Tasks and strategies,” in Proceedings of the 43rd
International Conference on Software Engineering (ICSE’21). IEEE,
2021, pp. 613–623.

[28] M. Paixao, J. Krinke, D. Han, C. Ragkhitwetsagul, and M. Harman,
“Are developers aware of the architectural impact of their changes?”
in Proceedings of the 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE’17), Oct 2017, pp. 95–105.

[29] R. K. Yin, “Designing case studies,” Qualitative research methods,
vol. 5, no. 14, pp. 359–386, 2003.

[30] F. Shull, J. Singer, and D. I. Sjøberg, Guide to Advanced Empirical
Software Engineering. Berlin, Heidelberg: Springer-Verlag, 2007.

[31] M. Kasunic, “Designing an effective survey,” Carnegie-Mellon Univ
Pittsburgh PA Software Engineering Inst, Tech. Rep., 2005.

