
Architecture Decision Records in Practice:
An Action Research Study

Bardha Ahmeti, Maja Linder, Raffaela Groner[0000−0001−8744−9203], and
Rebekka Wohlrab[0000−0002−5449−7900]

Dept. of Computer Science and Engineering
Chalmers | University of Gothenburg

Gothenburg, Sweden
gusahmeba@student.gu.se, guskalmas@student.gu.se,

{raffaela,wohlrab}@chalmers.se

Abstract.

Accepted to the 18th European Conference on Software Architecture (ECSA’24)

To establish good architectural practice and knowledge shar-
ing during software development and maintenance, architectural design
decisions need to be documented. While a lot of research has been done
on documenting architectural decisions, there exist few approaches with
empirical evidence on their applicability and usefulness in practice. Ar-
chitecture Decision Records are a popular documentation approach in
industry, but there is a lack of research focusing on how Architecture
Decision Records can be introduced in different company contexts.

To tackle this shortcoming, we performed an action research study in
cooperation with a company that develops a microservice-based sys-
tem without proper architecture design decision documentation. We per-
formed seven interviews to identify the challenges faced by the developers
of the system. Afterward, we introduced Architecture Decision Records
as a means of documentation. Over the course of three months, we ob-
served whether this markdown-based documentation approach addresses
the identified challenges. Our results show that practitioners face chal-
lenges related to the documentation culture, knowledge transfer, prior-
itization of information to be documented, as well as handling docu-
mentation for shared and distributed components. The first three types
of challenges are well addressed by Architecture Decision Records. How-
ever, challenges arising from developing distributed systems remain open.
Thus, there is a need for further research that helps to document de-
sign decisions for distributed systems effectively. We also compiled a list
of lessons learned from our study. We found that cooperation among
the teams was improved after the introduction of Architecture Deci-
sion Records. At the same time, the decision on where documentation is
stored has a massive influence on its perceived usefulness. Practitioners
should carefully consider what information to store centrally and what
information to store in local repositories.

Keywords: Action Research · Architecture Decision Records · Archi-
tecture Decision Documentation · Challenges · Software Architecture.

2 Ahmeti et al.

1 Introduction

A selected software architecture influences a software system in all stages of the
software life cycle. Therefore, its documentation is an important part of main-
taining a system efficiently for years, since missing or inadequate documentation
can delay maintenance or the onboarding process of new employees.

In particular, the documentation of architecture design decisions (ADDs)
plays an important role. Each decision is based on an analysis of the advantages
and disadvantages as well as a discussion of the technical options. Documenting
this information helps later to understand why a system has been implemented
in a certain way. It also helps to support future decisions and thus to avoid the
repetition of wrong decisions.

A lot of research has examined ADDs. For example, several tools facilitate
ADDs, like the Architecture Design Decision Support System (ADDSS) [4] tool
and Knowledge Architect (KA) [14]. Additionally, there are several approaches
to document ADDs, e.g., Architecture Decision Records (ADRs) [17, 12] or UML.

While ADRs are popular in industry [10], there is a lack of empirical evi-
dence on how ADRs can be introduced in companies as a means of documenting
ADDs. Most empirical studies focus on architectural documentation in general.
For example, Rost and Robillard [7] examined the extent to which the format
of architectural documentation affects comprehension. Manteuffel et al. [15] ex-
plored whether architectural decisions from previous projects can be reused in
new projects. Finally, Buchgeher et al. [3] mined open-source repositories at
GitHub to analyze the current use of ADRs.

However, no study addresses the challenges that practitioners face if they do
not have any proper documentation approach and how introducing ADRs can
overcome these challenges from a culture, tooling, and knowledge management
perspective. Therefore, we address the following research questions in our work:

RQ1: What challenges do practitioners face while developing microservices with-
out documentation of ADDs?

RQ2: To what extent are these challenges addressed when introducing ADRs
as a means of documenting ADDs?

To answer our two research questions, we performed action research in co-
operation with a company to investigate whether ADRs are suitable as a means
of documenting ADDs in practice. The system under consideration is based on
microservices and is developed and maintained by various agile teams.

Our results show that different types of challenges are more or less well ad-
dressed by ADRs. For example, challenges related to documentation culture or
knowledge transfer are well addressed by ADRs. However, challenges arising from
the distributed development of partially dependent components are insurmount-
able using only ADRs and require further development. Also, a clear definition of
documentation guidelines is crucial for implementing a documentation approach.

Architecture Decision Records in Practice 3

2 Related Work

In this section, we discuss a selection of related works. Firstly, we present work
that presents tools or other documentation approaches to document ADDs. Sec-
ondly, we describe studies that deal with architecture documentation in practice.
Documentation of ADDs: Several works deal with the documentation of
ADDs. In contrast to our work, however, no challenges are mentioned in these
works and these works do not consider microservice-based systems.

For example, Shahin et al. [20] evaluated nine different ADD models and
compare different tools that work with these models. Many papers, such as Lee
and Kruchten [13], Tyree and Akerman [22], Heesch et al. [23], and Kopp et
al. [12], present tools, views, or models for documenting ADDs. Often, these
approaches are similar to ADRs or use ADRs. Heesch et al. [23], for example,
described various views on documentation, one of which is very similar to the
ADRs we use. Kopp et al. [12] presented their tool for documenting ADDs with
the help of ADRs and evaluate their tool with several participants.

Haselböck et al. [9] analyzed different applications of decision models in
microservice-based architectures and developed their own decision models. They
introduced these models as part of a technical action research process in several
companies to identify relevant stakeholders and use cases for their models. In this
phase, the authors also collected requirements for their models. Like our work,
Haselböck et al. [9] also considered the documentation of ADDs in the context of
microservice-based systems. In comparison to their work, we use action research
to identify challenges that arise in such systems without proper documentation
and observe how the introduction of ADRs affects them.

Alexeeva et al. [2] analyzed 96 publications covering 58 approaches to doc-
ument ADDs and obtained a taxonomy for ADDs. The authors have also com-
piled a list of possible factors for the rare use of ADDs in practice, such as the
resulting documentation overhead not being taken into account and the lack of
integration in commercial tools. This list includes system-independent challenges
about ADDs. In comparison, our work focuses on the challenges in the context
of microservice-based systems.
Studies on Architecture Documentation in Practice: Several studies have
focused on the challenges of documenting the architecture of a system or ADDs.
Dasanayake et al. [6] performed a case study to examine the approaches devel-
opers use to make an ADD and what challenges they face during the decision-
making. Rost et al. [18] also conducted a study in which they interviewed 147
developers from the industry. Their study aimed to explore the challenges devel-
opers face when realizing an architecture based on its documentation. In com-
parison to these studies, we include different groups of stakeholders, such as
developers, architects, and team leaders, and examine the challenges they face
without proper ADD documentation. We also analyze how those challenges can
be mitigated by introducing ADRs.

Forward and Lethbridge [8] surveyed 32 developers about their documenta-
tion, with a focus on the tools used and the maintenance of the documentation.
Manteuffel et al. [16] performed a case study at a company. During this study,

4 Ahmeti et al.

the authors identified several challenges the developers face while they docu-
ment ADDs. For instance, the developers lack tool support and guidelines for
documenting ADDs. Based on their observations, a tool was developed that
implements the Decision Documentation Framework [23].

Although the studies by Forward and Lethbridge [8] and Manteuffel et al. [16]
presented challenges related to documentation and ADDs, they did not explicitly
focus on distributed microservice-based systems. In addition, they do not include
how the introduction of a documentation approach addresses these challenges.

The publication by Kleehaus and Matthes [11] is an example of a work that
deals with the documentation of microservice-based systems. The authors pre-
sented various challenges that developers face when documenting such a dis-
tributed system. In comparison to this work, we focus specifically on the doc-
umentation challenges in a real-world context, the introduction of ADRs, and
observations regarding to what extent the observed challenges were mitigated.

3 Architecture Decision Records

In this section, we provide some background on Architecture Decision Records
and introduce the template we use in this work.

Architecture Decision Records (ADRs) were introduced by Nygard [17]. The
idea is to make decisions comprehensible with the help of lightweight documen-
tation in a Markdown language. Nygard proposes a five-part structure, starting
with the title of the document. The context section summarizes the factors influ-
encing a decision, such as technical, social, or political factors. The decision sec-
tion describes the responses to the influencing factors from the context section.
The status section documents whether a decision is proposed, accepted, depre-
cated, or superseded. Finally, the resulting consequences are summarized [17].

Listing 1.1 shows a simplified version of an ADR that we provided to the
study participants as an initial example. The structure of this ADR is mainly
based on the structure presented by Nygard. However, our template also contains
a section to document other options considered and the reasoning for why they
were discarded. We also included a section for tags to label an ADR. Before the
introduction of ADRs at the company at which we conducted our study, we held
a workshop on ADRs. At this workshop, the practitioners provided feedback
that they would like to include these two sections in the ADR template.

ADR 000 Using ADRs

Context

Architecture decisions are currently not documented in a

structured and consistant way.

Decision

We will document every architecturally significant

decisions as ADRs. They will be stored in Markdown format.

Considered Options

Architecture Decision Records in Practice 5

--

Status

Accepted

Consequences

1. Team members should write an ADR and submit it for

review before implementing an approach to any architectural

decision.

2. We will have a visible history of the decisions

evolution through version control.

Tags

Documentation , Architecture Decision

Listing 1.1. Simplified Architecture Decision Record.

4 Study Context

We performed our study in cooperation with a Swedish engineering and con-
sulting company that offers engineering, design, digital, and advisory services in
different areas. Two teams participated in our study, both of which applied the
principles of agile software development. The teams already used tools, e.g., a
wiki page, and visualizations to document parts of their system but lacked an
approach to document ADDs in an effective and structured way. Both teams
were responsible for developing and maintaining a microservice-based system
that was used by the 19,000 employees of the company.

One team (teamSys) consisted of eight employees, namely one business ana-
lyst, one tester, and seven developers/architects. TeamSys was responsible for the
overall architecture and platform design of the system considered in our study.
The other team (teamApp) consisted of six employees, namely one team leader,
three developers, one tester, and one business analyst. TeamApp was responsible
for a few specific application services consumed by the system considered.

The teams regularly communicated architecture decisions through a devel-
oper forum, where all the teams met, presented, and discussed the decisions
taken. However, the lack of centralization and accessibility of documentation led
to confusion and slowed down the decision-making process.

5 Research Method

In this section, we describe the research method we used to answer our two
research questions. All supplementary material can be found online [1].

Since we want to learn the challenges that practitioners face while develop-
ing microservice-based systems without proper documentation of architecture
design decisions and how architecture decision records tackle these challenges
as a means of documenting ADDs in practice, we selected a research method

6 Ahmeti et al.

that focuses on the study context, learning, and improvement of the practice.
Our study was conducted over the course of three months. We applied action
research [21], which consists of five phases, namely Diagnosing, Action Planning,
Action Taking, Evaluation, and Learning [21]. In the following, we describe our
study design that implements these five phases.
Diagnosing: The first phase of action research was dedicated to identifying the
problem to be addressed [21]. We combined semi-structured interviews, a survey,
and participant observations to collect data in this phase and answer RQ1 [5].
A total of seven employees from both teams took part in the interviews. We
transcribed the recordings of the interviews and analyzed them with the help of
open coding using descriptive codes [19]. We provide information on the codes
used during our analysis at [1]. Six employees participated in our survey, and
we analyzed the results using descriptive statistics. For the observations, we
accompanied the participants to various daily meetings to observe the team
members in their usual activities. The observations were carried out in a non-
intrusive manner using notes to collect data about the daily work of the teams.
We present the results of our Diagnosing phase in Section 6.1.
Action Planning: This phase was dedicated to planning our study based on the
results from the Diagnosing phase [21]. Based on the result from the previous
phase, we designed a plan and guidelines to introduce Architecture Decision
Records (ADRs) as a means to document ADDs. The plan elaborated by us
consisted of three stages. First, a workshop was held to introduce ADRs. We
also discussed the structure, storage, visibility, and handling of ADRs with the
participants at this workshop. Second, in collaboration with the participants, we
introduced seven guidelines on how the team members should manage ADRs.
We assigned each guideline a unique ID using the naming schema G<number>
These guidelines were also published on a central wiki page and are as follows:

G1 ADRs affecting several microservices are stored in a central repository.
G2 ADRs are referred to in commit messages and user stories.
G3 ADRs are checked in with the code fragments connected to them in the

corresponding repository.
G4 ADRs are reviewed by another developer and are published after a successful

review.
G5 ADRs are tagged with the quality attributes, components, or features they

are related to.
G6 ADRs are labeled with a status to document whether an ADR is proposed,

accepted, rejected, deprecated, or superseded.
G7 New ADRs are discussed in biweekly developer forums.

Finally, the team members used ADRs in their daily work. To make this
step easier, we provided the teams with an example ADR. A simplified version
of this ADR is shown in Listing 1.1. During this stage, we collected data using
semi-structured interviews, a survey, and observation of the study participants.
Action Taking: During this phase, the plan designed during the Action Plan-
ning phase was performed [21]. During this stage of our study, we spent four
weeks at the company to collect data.

Architecture Decision Records in Practice 7

Evaluation: In this phase, the aim was to understand the influence of the
previously performed action [21]. As already mentioned, we analyzed our data
qualitatively with the help of coding.
Learning: The final phase in the cycle dealt with the lessons learned from the
previous phases [21]. Based on the combination of our evaluation of the results of
the Action Taking phase and our results from the Diagnosing phase, we obtained
different results for this phase to answer RQ2. We present the results of this
phase and our lessons learned in more detail in Section 6.2.

6 Findings

In this section, we present our findings and present our lessons learned. In Sec-
tion 6.1, we present the challenges the teams face without proper documentation
of ADDs. In Section 6.2, we present the observations we made after ADRs were
used for documentation and map them to the previously identified challenges.
Subsequently, we discuss and summarize our lessons learned.

6.1 Challenges Due to Insufficient Documentation (RQ1)

In this section, we focus on the challenges that practitioners face without proper
ADD documentation. First, we present insights that show how current team
members perceived the practice of documenting ADDs before introducing ADRs.
Afterward, we present the seven challenges that practitioners face without proper
documentation of ADDs.

Figures 1 and 2 show the results of the survey we performed during the
Diagnosing phase. Both plots consist of two parts: The part on the right shows
the number of participants who answered “Don’t know”. The part on the left
shows the number of participants who answered the respective question. The
bars in the left part of the plot grow from the center to the left to present
the negative answers of the participants. To represent the positive answers the
respective bar grows from the center to the right. The annotations show the
percentage share of the six participants who answered the respective question
positively or negatively.

In Figures 1 and 2, it is noticeable that at the beginning of our study, 83% of
respondents stated that ADDs are only rarely or occasionally documented and
that there are no clear guidelines for documenting ADDs. In addition, half of
the survey participants are dissatisfied with the way ADDs are documented.

Based on the analysis of our qualitative data, we identified seven challenges
that can be categorized into four main categories, namely Documentation
Culture, Shared/Distributed System Parts, Knowledge Transfer, and
Prioritization. To enable traceability, we assign each challenge a unique ID
using the naming schema C<number>.
Documentation Culture: The first challenge is related to the problems of
fostering a documentation culture in an agile team (C1). Figure 2 shows the
dissatisfaction of the practitioners with the currently available documentation.

8 Ahmeti et al.

Rarely

Rare

Occasionally

Frequently

Frequent

All the time

Don't know

0%

0%

How often are
ADDs made?

How often are ADDs
 documented?

83% 17%

50% 50% 0%

Don't know

Fig. 1. Frequency of ADDs and their documentation before introducing ADRs

Agree

Strongly agreeDisagree

Strongly disagree

Disagree Agree

Don't know

Our team has clear guidelines
for the documentation of ADDs.

I am satisfied with how
we document ADDs.

83%

50% 50%

17%

0%

0%

0%

Don't know

Fig. 2. Assessment of the current ADD documentation before introducing ADRs

Additionally, some team members elaborated on their dissatisfaction due to miss-
ing documentation during our interviews. Based on the participants’ statements,
we identified one challenge related to the documentation culture. For example,
an architect from teamSys mentioned: “It seems to be challenging also when you
work with agile and you have to continuously deliver. It seems like stopping for
documentation is a challenge for teams across the industry so yeah, documenta-
tion is hard.”

Shared/Distributed System Parts: Different teams are involved in develop-
ing the microservice-based system at the company we cooperated with. Thus, the
corresponding code is stored in different repositories. In this context, some par-
ticipants mentioned that the placement of documents can affect their usefulness.
One challenge relates to identifying and receiving information about ADDs that
affect all or multiple components of a system (C2). This challenge is supported
by the statement from an architect from teamSys: “We have a lot of different
teams that are working with the different parts of our platforms. But sometimes,
there is stuff that is common for all the teams, and then finding that decision
and finding why we did something or haven’t done something, it is hard.”

Another challenge relates to the location where the documentation is stored
because the documentation of ADDs is currently scattered across different tools
and platforms (C3).

Knowledge Transfer: Documentation is a means of knowledge transfer. We
identified two challenges arising from a lack of/insufficient documentation in
knowledge transfer.

The lack of documentation leads to relying on individual team members to
maintain the context and history of ADDs and recall them from memory (C4).
Relying on the memory of individual team members as a means of documentation
is not expedient. On the one hand, essential knowledge gets lost when team
members leave the company. On the other hand, individual team members are

Architecture Decision Records in Practice 9

burdened with a high mental load and responsibility, as they are expected to
remember all decisions correctly.

Another challenge is related to onboarding new team members. Due to out-
dated and missing documentation, onboarding depends on meetings with other
team members (C5). As a result, the employees’ productivity decreases during
the onboarding of new team members. On the one hand, senior employees are
busy with onboarding tasks that could be covered by providing documentation.
On the other hand, the onboarding of a new employee depends on the availabil-
ity of other team members. This problem can also be seen in the statement of
a developer from TeamApp: “[...] it kind of takes time from developers to share
the information every time a new person starts.”
Prioritization: Besides the issue of where the documentation should be stored,
another important aspect is deciding on what should be documented. One chal-
lenge deals with missing prioritization of information to be documented (C6). A
lack of prioritization might lead to too much documentation, which overwhelms
the team members due to the resulting workload and excessive documentation.

Another challenge is partly related to the previously mentioned challenge,
as it encompasses the lack of guidelines for prioritizing information to be doc-
umented (C7). This lack of guidelines is also reflected by the answers to our
survey during the Diagnosing phase. As shown in Figure 2, four of the six sur-
vey participants stated that they disagree with the statement “Our team has
clear guidelines for the documentation of ADDs.” Additionally, one participant
stated that they strongly disagreed with the statement.
Answer to RQ1: The majority of the challenges we identified are independent
of the developed system. For example, the lack of guidelines for documenta-
tion or the loss of expertise due to a lack of documentation are challenges that
exist independently of the system architecture. Nevertheless, we identified two
system-specific challenges. The first challenge is concerned with identifying and
receiving information that is relevant for multiple microservices. The second one
is concerned with documentation scattered across different tools.

6.2 Observations after introducing ADRs (RQ2)

After introducing ADRs as a means of documenting architectural design deci-
sions, we observed several changes in the teams that are related to the seven
challenges we presented in Section 6.1. Figure 3 shows an overview of the team

Strongly disagree

Disagree

Agree

Strongly agree

Don't know

11%

11%

11%

0%

0%

78%

89%

Our team has clear guidlines
for documenting ADDs.

I am satisfied with how
we document ADDs.

Disagree Agree Don't know

Fig. 3. Assessment of the ADD documentation using ADRs

10 Ahmeti et al.

members’ perceptions after introducing ADRs. It can be seen that most partic-
ipants considered their team to have clear guidelines and that they were satis-
fied with their documentation approach. If we compare Figure 3 with Figure 2,
we can see a more positive assessment compared to before the introduction of
ADRs for documentation. If we assign numerical values to the nominal scale
with “strongly disagree”=1 to “strongly agree”=4 and exclude the two “don’t
know” responses, we see that the average agreement values also increased. The
average agreement with the statement about guidelines increased from 2 to 2.9.
The average agreement increased from 2.5 to 3.1.

In this section, we describe our observations and map them to their related
challenges using our identifier schema:C<number>. In the following, we assign
each observation an identifier using the naming schema O<number>.

In total, we gathered nine observations that show to what extent the chal-
lenges were tackled by the introduction of ADRs to document ADDs. An overview
of our findings can be seen in Table 1 which summarizes the identified challenges
and maps them to our observations. In this section, since we map the previ-
ously identified challenges to observations, we reuse our four main categories
(Documentation Culture, Shared/Distributed System Parts, Knowl-
edge Transfer, and Prioritization) to classify our observations.

Documentation Culture: C1 is related to the difficulties in maintaining doc-
umentation. During our study, we observed different changes related to this
challenge: First, writing ADRs led to team members discussing the importance
of documentation (O1). TeamApp introduced a review process for ADRs and
integrated ADRs into its daily meetings. This also encouraged collaboration be-
tween developers in the creation of ADRs (O2). Furthermore, team members
mentioned that ADRs were easy to create (O3). For example, an architect from
teamSys mentioned “I think it’s really easy to write them actually. They are basic
enough, as they should be.”

Shared/Distributed System Parts: C2 is concerned with retrieving infor-
mation about decisions that affect multiple parts of the system. To deal with this
challenge, for this study we decided to document such decisions in a separate
repository for all teams (cf. G1 in Section 5). Seven of nine participants of our
second survey stated that they used the documentation (O4). In addition to the
guidelines we provided, some participants expressed the wish to integrate the
documented ADRs into the rest of the system documentation (O5).

The practitioners proposed a tag-based system to address the challenge of
scattered ADD documentation across different tools and platforms (C3). Their
idea was that ADRs should be categorized using standardized tags and then
all ADRs could be filtered using these categories (O6). The ADR template we
used in our study already provides a section for tags, but these tags were not
standardized and we did not provide a search mechanism.

Knowledge Transfer: C4 is concerned with relying on individual team mem-
bers to remember and correctly recall ADDs. We observed that this challenge
is eliminated by using ADRs as a means of documenting ADDs (O7). This is
also reflected in the statement of a developer from TeamApp: “What I like most

Architecture Decision Records in Practice 11

Table 1. Overview of the identified challenges and the associated observations.

Challenges Observations
ID Description ID Description

C1
Foster and maintain a
documentation culture in an
agile team

O1
Writing ADRs sparked discussions
about the importance of docu-
mentation.

O2
ADRs are perceived as encourag-
ing collaboration.

O3
ADRs are perceived as an easy
way to document ADDs.

C2

Identifying and receiving
information about ADDs that
affect all or multiple
components of a system

O4
Participants used the documenta-
tion of overarching ADRs.

O5
Participants want to include
ADRs in the system documenta-
tion.

C3
The documentation of ADDs is
scattered across different tools
and platforms.

O6

Participants suggest standardized
tags to filter ADRs, independently
of the repositories they are stored
in.

C4
Relying on individual team mem-
bers to maintain the context and
history of ADDs

O7
By using ADRs, team members
no longer need to memorize
ADDs.

C5
Onboarding depends on meetings
with other team members

O8
Participants rate it as likely that
they will integrate ADRs into the
onboarding process.

C6
Lack of prioritization of the infor-
mation to be documented O9

Provided guidelines helped the
participants, but they need
further improvement.C7 Lack of guidelines for prioritizing

about ADRs is that I do not need to remember these things further, I can write
them down here and now and then be sure that I won’t lose this information.”

The timeframe of our study was too short to determine whether the use of
ADRs makes the onboarding process less dependent on meetings with experi-
enced team members (C5). In our second survey, we asked participants using
a 5-point scale (1=“very unlikely” to 5=“very likely”) about the likeliness of
including ADRs in the onboarding process. Two participants rated the likeliness
with 3, five participants rated it with 4, and two rated the likeliness with 5. The
rating indicates that the participants are very positive about integrating ADRs
into the onboarding process (O8).

Prioritization: In terms of prioritization, we were able to identify two chal-
lenges. Firstly, what should be documented (C6), and secondly, what guidelines
should be applied for prioritization (C7). Related to these two challenges, we
observed that the seven guidelines we provided are already helping the team
members. Nevertheless, the participants noted that the guidelines need to be
further improved (O9). For example, some team members struggled to decide
whether a change should be considered as an ADD and thus needs to be docu-

12 Ahmeti et al.

mented using an ADR. This is also reflected in the statement of an architect from
teamSys: “The hardest part might be to actually decide whether it’s a change that
is made, whether it’s to be considered as an ADR, or if it’s just part of normal
maintenance.”

Answer to RQ2:Our results show that challenges related to system-independent
categories like documentation culture or knowledge transfer are addressed well
using ADRs. Challenges that practitioners face due to the distributed nature of
the microservice-based system are not addressed and need further research. To
tackle this issue, the participants made some suggestions like implementing stan-
dardized tags and a filtering mechanism that allows them to search for ADRs
across all tools and repositories.

6.3 Discussion and Lessons Learned

Based on our findings, we have compiled a list of lessons learned, which we
discuss and summarize in this section.

Documentation Culture: We have learned that introducing ADRs has led to
stronger cooperation among the teams (O2).

Previously, ADDs were discussed and communicated in wiki pages and dis-
cussions in development forums or via teams. After the introduction of ADRs,
the developers wrote ADRs cooperatively. Additionally, there was a stronger
focus and more discussions in the teams on how, where, and what should be
documented. Despite these positive effects, some effort is needed to integrate
ADRs into existing processes. For example, some developers had difficulties in-
tegrating the creation of ADRs into their daily workflow.

It is not always the case that the documentation of decisions strengthens
cooperation within a team. For example, Dasanayake’s [6] survey shows that co-
operation depends on the respective teams. This is also shown by the case study
of Forward and Lethbridge [8], in which decisions are often made in cooperation,
regardless of whether they are documented.

Therefore, we assume that this lesson learned is independent of the method
of documentation used. However, we expect the corporate culture and social
dynamics within a development team to have a strong influence. The teams in
our study use agile software development, which might have also influenced this
lesson learned.

Guidelines and Prioritization: We have learned that clear guidelines on the
content to be documented are crucial for implementing a documentation ap-
proach successfully (C7).

During our study, practitioners sometimes struggled to decide whether a de-
cision was an architecturally significant decision and whether they should create
an ADR. Furthermore, practitioners need additional guidelines to help them
prioritize the information to be documented, as they only have limited time
available due to the short development cycles in agile software development.
Our participants have prioritized their documentation based on the complexity
of the logic involved, the impact of changes on the system, and the number of

Architecture Decision Records in Practice 13

developers or teams affected. Some practitioners suggested prioritizing based on
the criticality of the system or component or the frequency of changes.

The problem of a lack of guidelines for documentation is also mentioned by
the participants in the evaluation of the documentation framework by Manteuffel
et al. [16]. In this work, the participants state that they document “major”
decisions without a clear definition of what “major” means in a given context.

Our seven guidelines from Section 5 are context-independent. Thus, they can
applied to other teams without any adjustments. However, we expect the two
shortcomings related to explicitness and prioritization mentioned above to be
context-independent. Thus, these shortcomings might also occur in other teams.
Shared and Distributed System Parts: We have learned that the storage
location of the documentation has an extreme impact on its usefulness and ac-
cessibility (C3).

On the one hand, the documentation of shared system components should
be accessible to all teams for which the corresponding ADRs are relevant. On
the other hand, the practitioners prefer to store the documentation with the
corresponding system part/code. One developer commented on this way of or-
ganizing documentation. They stated that the documentation for a service might
be stored in its repository because the developers do not know that their ADD
affects several other services as well. Thus, developers of a service need to know
which services depend on their service and whether their ADD affects other
services to decide where to store the documentation.

One approach is to store the documentation locally with the automated pub-
lication of the ADRs on a central wiki page or similar. In our study, the practi-
tioners also noted that ADRs should be provided with standardized tags. These
tags should be used to filter the ADRs and identify relevant ADRs across all
platforms and tools used.

Regardless of whether a system is distributed or not, practitioners report that
important information is often scattered strongly [18]. For example, developers
use different tools for documentation [8]. Practitioners also mention difficulties
in navigating existing documentation [18] or revisiting the design rationale [6]. In
the Forward and Lethbridge survey [8], participants mentioned that centralized
documentation beyond individual projects would help them.

This lesson applies to all distributed systems, especially when ADDs affect
multiple system components. However, we also see in other works that teams
have problems organizing documentation in a consistent and easy-to-find way,
regardless of the system developed. Whether the solution proposed by the prac-
titioners solves this issue needs to be explored in more detail.

7 Threats to Validity

In the following, we discuss threats to the validity of our study.
Conclusion validity: Our results might be only a small subset of possible
challenges and observations since we performed our study in the context of one
company and used mainly data collection methods that produce qualitative data.

14 Ahmeti et al.

However, with the help of action research in the context of one specific company,
we can directly observe the impact of introducing ADRs to document ADDs in
practice. Additionally, the qualitative data we obtained provides us with more
insights into the challenges that practitioners face without proper documentation
and what changes arise in the company due to introducing a systematic way to
document ADDs.
Internal validity: Interviewing participants can always lead to incorrect data
being collected due to the interviewee’s bias or inaccuracies. Therefore, we ap-
plied multiple methods, as this allows us to triangulate data from interviews,
surveys, and participant observation.

The interviews were coded by two researchers independently and their results
were subsequently compared to avoid researcher bias and mistakes.
Construct validity: We performed pilot interviews with two students and a
software developer to test the interview procedure and identify ambiguous ques-
tions.

The implementation of data collection based on observations is always prone
to participants behaving differently under observation than in real life. We tried
to observe the participants as non-intrusively as possible. However, we cannot
say to what extent our presence influenced the participants‘ behavior.

Terms like ”decision” can be interpreted in different ways by different partic-
ipants. To ensure that a common meaning is used, those constructs were briefly
discussed at the beginning of the interviews, when introducing the topic.
External validity: We cannot say to what extent our results apply to other
companies. However, we expect the identified challenges to apply to other com-
panies with a similar working setup as the company in our study. There might be
further challenges, e.g., related to the storage and distribution of ADD documen-
tation, the size of the development teams, or the complexity of the microservice-
based system. The behavior of the participants, on the other hand, may differ
from our observations even in an identical company, as this depends on various
factors such as team dynamics, personality, and company culture.

We used ADRs for the documentation of ADDs. We cannot say to what
extent this influenced our results. We assume that the use of other documentation
approaches will produce slightly different results. For example, if our study is
repeated using a documentation approach that provides dedicated tool support,
the usability of such a tool is an additional, decisive factor influencing the results.
Reliability: We published our study material at [1] to increase the reliability
of our study. However, we cannot publish the raw data due to confidentiality. It
should be noted, that our results are based on experience in a company. Thus,
we cannot guarantee that researchers produce the same results if they repeat
our study in another company.

8 Conclusion

This research was motivated by a lack of studies on how introducing ADRs can
overcome documentation challenges from a culture, tooling, and knowledge man-

Architecture Decision Records in Practice 15

agement perspective. To close this gap, this action research study has examined
the impact of ADRs on the challenges associated with documentation practices
during the distributed development of a microservice-based system.

Our results show that challenges can be divided into different categories.
Challenges that belong to categories that can also occur in non-distributed sys-
tems, such as knowledge transfer, are already well addressed by ADRs in combi-
nation with clear guidelines for documentation. However, for challenges arising
from the distributed system developed, there is currently no suitable solution.
This lack of support in documenting ADDs for distributed systems is also evident
from our lessons learned. Therefore, we see a need for future work, especially on
the effective management of ADD documentation in distributed systems.

9 Data Availability

We published our study material consisting of two questionnaires, our interview
guides, and information on the codes used during our analysis at [1]. We cannot
publish the collected raw data due to confidentiality.

Acknowledgments

This work was partially supported by the Wallenberg AI, Autonomous Systems
and Software Program (WASP) funded by the Knut and Alice Wallenberg Foun-
dation.

References

1. Ahmeti, B., Linder, M., Groner, R., Wohlrab, R.: Supplementary material. https:
//doi.org/10.5281/zenodo.11635100 (2024)

2. Alexeeva, Z., Perez-Palacin, D., Mirandola, R.: Design decision documentation:
A literature overview. In: Tekinerdogan, B., Zdun, U., Babar, A. (eds.) Soft-
ware Architecture. pp. 84–101. Springer International Publishing, Cham (2016).
https://doi.org/10.1007/978-3-319-48992-6˙6

3. Buchgeher, G., Schöberl, S., Geist, V., Dorninger, B., Haindl, P.,
Weinreich, R.: Using architecture decision records in open source
projects—an MSR study on GitHub. IEEE Access 11, 63725–63740 (2023).
https://doi.org/10.1109/ACCESS.2023.3287654

4. Capilla, R., Nava, F., Montes, J., Carrillo, C., et al.: ADDSS: architecture design
decision support system tool (2010)

5. Clark, V.L.P., Ivankova, N.V.: Mixed methods research: A guide to the field, vol. 3.
Sage publications (2015)

6. Dasanayake, S., Markkula, J., Aaramaa, S., Oivo, M.: Software architecture
decision-making practices and challenges: An industrial case study. In: Proceedings
of the 2015 24th Australasian Software Engineering Conference. pp. 88–97 (2015).
https://doi.org/10.1109/ASWEC.2015.20

7. Ernst, N.A., Robillard, M.P.: A study of documentation for software architecture.
Empirical Software Engineering 28(5), 122 (2023)

16 Ahmeti et al.

8. Forward, A., Lethbridge, T.C.: The relevance of software documentation, tools and
technologies: a survey. In: Proceedings of the 2002 ACM Symposium on Document
Engineering. p. 26–33. DocEng ’02, Association for Computing Machinery, New
York, NY, USA (2002). https://doi.org/10.1145/585058.585065

9. Haselböck, S., Weinreich, R., Buchgeher, G.: Decision models for microservices:
Design areas, stakeholders, use cases, and requirements. In: Lopes, A., de Lemos,
R. (eds.) Software Architecture. pp. 155–170. Springer International Publishing,
Cham (2017)

10. Keeling, M.: The psychology of architecture decision records. IEEE Software 39(6),
114–117 (2022). https://doi.org/10.1109/MS.2022.3198195

11. Kleehaus, M., Matthes, F.: Challenges in documenting microservice-based
it landscape: A survey from an enterprise architecture management per-
spective. In: Proceedings of the 2019 IEEE 23rd International Enter-
prise Distributed Object Computing Conference (EDOC). pp. 11–20 (2019).
https://doi.org/10.1109/EDOC.2019.00012

12. Kopp, O., Armbruster, A., Zimmermann, O.: Markdown architectural decision
records: Format and tool support. In: ZEUS. pp. 55–62 (2018)

13. Lee, L., Kruchten, P.: A tool to visualize architectural design decisions. In: Becker,
S., Plasil, F., Reussner, R. (eds.) Quality of Software Architectures. Models and
Architectures. pp. 43–54. Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

14. Liang, P., Jansen, A., Avgeriou, P.: Knowledge Architect: A Tool Suite for
Managing Software Architecture Knowledge. University of Groningen, Johann
Bernoulli Institute for Mathematics and Computer Science (2009), relation:
http://www.rug.nl/informatica/organisatie/overorganisatie/iwi Rights: University
of Groningen, Research Institute for Mathematics and Computing Science (IWI)

15. Manteuffel, C., Avgeriou, P., Hamberg, R.: An exploratory case study on reusing
architecture decisions in software-intensive system projects. Journal of Systems
and Software 144, 60–83 (2018). https://doi.org/10.1016/j.jss.2018.05.064

16. Manteuffel, C., Tofan, D., Koziolek, H., Goldschmidt, T., Avgeriou, P.: Industrial
implementation of a documentation framework for architectural decisions. In: Pro-
ceedings of the 2014 IEEE/IFIP Conference on Software Architecture. pp. 225–234.
IEEE (2014)

17. Nygard, M.: Documenting architecture decisions. https://www.cognitect.

com/blog/2011/11/15/documenting-architecture-decisions (2011), online; ac-
cessed 12-April-2024

18. Rost, D., Naab, M., Lima, C., von Flach Garcia Chavez, C.: Software architecture
documentation for developers: A survey. In: Drira, K. (ed.) Software Architecture.
pp. 72–88. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

19. Saldaña, J.: The coding manual for qualitative researchers (2013)
20. Shahin, M., Liang, P., Khayyambashi, M.R.: Architectural design decision: Existing

models and tools. In: Proceedings of the 2009 Joint Working IEEE/IFIP Confer-
ence on Software Architecture & European Conference on Software Architecture.
pp. 293–296 (2009). https://doi.org/10.1109/WICSA.2009.5290823

21. Staron, M.: Action research in software engineering. Springer (2020)
22. Tyree, J., Akerman, A.: Architecture decisions: demystifying architecture. IEEE

Software 22(2), 19–27 (2005). https://doi.org/10.1109/MS.2005.27
23. van Heesch, U., Avgeriou, P., Hilliard, R.: A documentation framework for ar-

chitecture decisions. Journal of Systems and Software 85(4), 795–820 (2012).
https://doi.org/10.1016/j.jss.2011.10.017

