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Self-* systems focus on optimizing systems regard-
ing adaptation goals, e.g. availability, that relate to properties of
the managed system. While these adaptation goals are important,
the feedback loop must also be considered. It is problematic
if systems adapt too often, make too time-consuming changes
that involve insecure transition states, or react too slowly when
planning adaptations. Current approaches do not allow to enforce
requirements on the adaptation loop—including sensitivity, sta-
bility, and transition states. When planning adaptations, those
meta-adaptation goals need to be considered and potentially
traded off against traditional adaptation goals. Such a trade-
off might entail, for instance, that it may be worth it to adapt
a system less frequently, although the overall availability of the
system could be higher with more adaptations.

We propose to explicitly consider feedback loop requirements
for self-adaptive systems. Concretely, we propose using machine
learning to predict quality measures based on the state of the
feedback loop and the managed system. This information is
used to plan for better adaptations that consider the adaptation
goals and the meta-adaptation goals of the feedback loop. The
explicit representation of meta-adaptation goals and adaptation
goals enables the optimization of adaptation strategies, trade-off
analysis, and evaluation of adaptations.

Index Terms—feedback loop requirements, self-adaptation,
machine learning, MAPE-K, adaptation goals

I. INTRODUCTION

Self-* systems commonly focus on optimizing systems
concerning adaptation goals that relate to properties of the
managed system [1], such as performance, availability, or
energy efficiency. Besides focusing on the qualities of the
managed system, it is crucial to also consider the qualities
of the feedback loop. While past research has explored the
need to focus on properties of the adaptation loop, including
sensitivity, stability, and transition states [2], [3], requirements
on the feedback loop are often not explicitly taken into account
during the planning and execution of adaptations.

A survey on self-adaptation in industry found that ex-
isting research does not tackle the risks that practitioners
face when engineering self-adaptive systems, including perfor-
mance degradation or reduced availability due to the adapta-
tion process [4]. Existing works, e.g. [5]–[7], propose a model-
based cost-benefit analysis for adaptation strategies. These
models must be created by system experts who also know how
to model the relationships between the system configurations
and the desired quality requirements. Such a manual approach
is very time-consuming, complex, and error-prone.

To tackle this issue, we advocate the idea of expanding
the managed system-centered view by making the quality
requirements of the feedback loop explicit and modeling them
using machine learning. We call these quality requirements
meta-adaptation goals (MAGs). Meta-adaptation goals are
concerned with the sensitivity, stability, adaptation duration,
and other quality attributes that concern the feedback loop
and are, therefore, more complex than simple costs or benefits
of applied adoption strategies. Examples of meta-adaptation
goals are: “The time it takes to execute the adaptation shall
be less than 60s.” or “The monitoring of the managed system
should cause an overhead of less than 5%.”

We propose a systematic approach that considers meta-
adaptation goals of the feedback loop as first-class citizens
alongside the adaptation goals of the managed system. Our
approach takes the adaptation goals of the managed system
and the meta-adaptation goals into account when planning and
implementing an adaptation. This requires an approach that
can describe the relationship between the state of the managed
system, the feedback loop, the adaptation goals, and meta-
adaptation goals. However, such a description is not trivial due
to the complex relationships between the individual aspects
and the large number of possible configurations of a managed
system. To this end, we propose using a machine learning-
based regression model that predicts quality measures of a self-
adaptive system based on the state of the feedback loop and
the managed system. The regression model is needed because
it is difficult to anticipate how long a planned adaptation
takes and whether it will lead to a stable state. It is a data-
driven method that is instantiated with simulation-based data
and then continuously updated during runtime. This regression
model can be used in the feedback loop to assess whether an
adaptation that meets adaptation goals better than the current
configuration improves the quality of the overall system or
harms the system by violating meta-adaptation goals.

II. ILLUSTRATIVE EXAMPLE

We exemplify our vision using the cyber-physical system
DeltaIoT [8]. DeltaIoT is a real-world example of an Internet
of Things system. The system enables dynamic adaptation of
the network settings of individual motes (e.g., transmission
power and spreading factor) to reduce energy consumption.
To effectively implement such dynamic adaptation, Weyns
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and Iftikhar implement ActivFORMS [9] leveraging timed
automata modeling and statistical model checking to ensure
correct and efficient adaptation at runtime. ActivFORMS has
been evaluated and compared with RQV (Runtime Quantita-
tive Verification), which uses quantitative verification to plan
adaptations [10].

We use the comparison between ActivFORMS and RQV
in [9] as the basis of our illustrative example. Our example
system should trigger an adaptation to switch between Ac-
tivFORMS and RQV. We consider package loss and energy
consumption as adaptation goals of the managed system to
be optimized. The meta-adaptation goals for the feedback loop
in our example are adaptation time and the memory usage
to plan adaptations (computational space), since realistic
environments require fast adaptations that do not consume a
lot of computational resources.

Our approach aims to reach a configuration of the managed
system and the feedback loop that achieves the best possible
compromise between all four quality goals, depending on the
current environment. For instance, ActivFORMS comes with
a shorter adaptation time than RQV. However, the packet loss
using ActivFORMS is higher than when using RQV [9].

III. RELATED WORK

Quality of the feedback loop: Several works deal with the
quality of the feedback loop as well as related meta-adaptation
goals. For instance, ASMs have been used for the verification
and validation of feedback loops [11]. In contrast to our
work, related research does not explicitly focus on the meta-
adaptation goals of the feedback loop and their compliance at
runtime.

Awareness requirements are a related category of require-
ments that describe the success or failure of other requirements
at runtime [12]. In comparison to the meta-adaptation goals
we consider, such as the duration of an adaptation, awareness
requirements describe expectations on the managed system.
For example, a service should always be available regardless
of the current configuration of the managed system.

Related work has acknowledged the need to consider
requirements at the feedback loop level, similar to meta-
adaptation goals. Lists of such quality attributes have been
compiled and mapped to related quality attributes of the
managed systems [2], [3]. Additionally, the Adaptive Strate-
gies Metric Suite [13] measures various design and runtime
properties of adaptation strategies. While these works give a
good overview of possible meta-adaptation goals, they lack
a systemic integration of these goals into the feedback loop.
Additionally, they do not simultaneously consider the state of
the feedback loop and the state of the managed system, even
though both affect the fulfillment of meta-adaptation goals and
adaptation goals of the managed system. We want to address
both shortcomings.

Cost-benefit trade-off: Some works deal with cost-benefit
considerations for adaptations.

For example, the work presented in [5], [6] is a runtime
extension of the Cost-Benefit Analysis Method [14]. Like our

approach, this approach relies on predictions of expected costs
and benefits to evaluate adaptation strategies. However, their
approach requires a manually defined runtime model. Thus, to
create a correct and reliable prediction model, one must fully
understand the managed system and the managing system, as
well as their interrelations.

There are also cost-benefit analyses that evaluate the gain
or loss of a configuration based on empirically constructed
functions [7].

The presented studies [5]–[7] only consider one meta-
adaptation goal, namely the costs of an adaptation. Other
possible meta-adaptation goals, such as memory consumption
during planning, monitoring overhead, or increased analysis
time due to more complex configurations, are not considered.
To be able to take such meta-adaptation goals into account, we
suggest extending the respective components of the feedback
loop to monitor their state. Furthermore, the approaches in [5]–
[7] are based on manually creating a model or function that
can map the current system state to multiple adaptation goals
and meta-adaptation goals. Therefore, we propose to replace
this complex, error-prone manual step by training a machine
learning approach.
Meta-adaptation layer: Some studies suggest the introduc-
tion of a second feedback loop that adapts the original feed-
back loop so that it can evolve and react optimally in unknown
circumstances. The second feedback loop is also often called
the self-improvement, evolution, or meta-adaptation layer.

Some works propose to integrate a further feedback loop
to optimize the adaptation strategy of the original loop at
runtime [15], [16]. This evolution of the original feedback
loop optimizes its behavior but only to improve adaptation
goals of the managed system.

Other works propose to adapt the adaptation strategy, poli-
cies [17], or logic to improve the system so it can deal
with situations that were unknown at design time [18]. Some
works [15]–[18] aim to optimize the behavior of the feedback
loop. They do not consider any meta-adaptation goals or pos-
sible trade-offs between adaptation goals and meta-adaptation
goals while analyzing or planning an adaptation.
Machine learning and feedback loops: Several proposed
approaches rely on machine learning.

Maggio et al. [19] investigated various decision-making
techniques for self-optimization. In addition to heuristics of
control theory, the authors also examined machine learning
approaches and compared them in terms of their performance.
A similar approach to ours [20] uses machine learning to
map the influence of an adaptation on the adaptation goals.
Several works use machine learning to reduce the adaptation
space [21]–[23]. They all propose ways to enhance individual
parts of the feedback loop by integrating machine learning
techniques. Our approach, however, aims to consider meta-
adaptation goals in the analysis and planning of an adaptation
by using machine learning to shift the mainly one-sided focus
on achieving the adaptation goals of the managed system.

There is also work such as [24], [25], which uses machine
learning to predict the satisfaction of adaptation goals and
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Fig. 1. Overview of training a machine learning approach

trigger an adaptation proactively. These works aim to optimize
towards adaptation goals and do not consider the desired meta-
adaptation goals for the feedback loop.

IV. MULTI-OUTPUT REGRESSION

In our approach, we leverage multi-output regression to
predict the quality measures related to the adaptation goals
of the managed system and the meta-adaptation goals of the
feedback loop. The idea is that when selecting adaptation
strategies, the planner needs to be able to assess how long an
adaptation will take, whether any insecure intermediate steps
are involved and whether the planned adaptation is likely to
lead the system to a stable state. Therefore, it is important to
have realistic predictions of the quality measures related to the
adaptation goals and the meta-adaptation goals.

Since we want to predict values for several target labels,
a so-called multi-output regression [26] approach is a suit-
able solution. These approaches can map a vector of input
data (features) to a vector of target labels and thus predict
values for several dependent variables. Figure 1 illustrates how
we can predict the expected package loss, energy consumption,
computation space, and adaptation time (target labels) for a
given number of motes and ActivFORMS or RQV as an
adaptation strategy (features).

V. META-ADAPTATION GOALS AS FIRST-CLASS CITIZENS

Our goal is to consider meta-adaptation goals (MAGs) of
the feedback loop as first-class citizens in a self-adaptive
system to improve its overall quality. To this end, we propose
to extend all phases of the MAPE-K feedback loop and
integrate a multi-output regression model. An overview of our
proposed extensions of the MAPE-K feedback loop is shown
in Figure 2. The centerpiece of our approach is a regression
model that extends the functionality of the Analyze and Plan
components to consider MAGs. Furthermore, we extend the
Monitor and Execute components to integrate the optimization
of our regression model as part of the feedback loop.

The regression model maps the monitored state of the
managed system and the feedback loop to the expected quality

TABLE I
OVERVIEW OF THE CHALLENGES AND OUR PROPOSED APPROACHES.

Challenge Approach

K
no

w
le

dg
e

C1 Encoding the monitoring data. A1 Assess suitability of
different encodings and
machine learning (ML)
approaches.

C2 Encoding of quality require-
ments of the managed system and
the MAGs.
C3 Identifying ML approach that
provides a good regression model.

M
on

ito
r C4 Suitable monitoring approach. A2 Monitoring approaches

from performance engineering.
C5 Efficient data management for
the training data.

A3 Clustering techniques to
reduce amount of stored data.

A
na

ly
ze

C6 Large state space exploration
when evaluating target states.

A4 Examine approaches to
prevent state space explosion.

C7 Integrate analyses to assess
complex MAGs.

A5 Possible reuse of safety/se-
curity analysis methods.

C8 Interpretation model that in-
dicates the best trade-off between
adaptation goals and MAGs.

A6 Explore trade-off analy-
ses to derive an interpretation
model.

C9 Identify an approach to assess
the quality of the regression model.

A7 Simulation-based experi-
ments to identify suitable qual-
ity assessment methods.

Pl
an

C10 Minimize the state space
exploration during the
evaluation of possible
intermediate states.

A8 Examine different exist-
ing approaches to prevent state
space explosion.
A9 Discard inappropriate solu-
tions at an early stage.

E
xe

cu
te C11 Parallel exec. of the adaptation

of the managed system and the
retraining of the regression model.

A10 Examine existing paral-
lelization approaches.

measures in this state. For example, our regression model may
predict the expected packet loss and energy consumption if we
use a certain network configuration and how long it takes to
adapt the network configuration of the managed system. This
mapping can then be used to predict how possible target or
intermediate states will affect the adaptation goals and MAGs
by using a description of these states as input to the regression
model.

With the help of a trade-off analysis method, the Analyze
and the Plan phase can then evaluate whether a target state
or an intermediate state achieves the desired trade-off between
optimization of the adaptation goals of the managed system
and compliance with the MAGs. Ultimately, this optimizes
the managed system for adaptation goals and expands the
feedback loop with additional knowledge to improve the
quality of the overall self-adaptive system.

In the following, we describe the necessary actions, chal-
lenges, and our proposed approaches to tackle them in the
context of the MAPE-K architecture. To trace challenges and
ideas to tackle them, we assign identifiers using the schema
C<ID> for challenges and A<ID> for proposed approaches.
Table I provides an overview of the challenges and our
proposed approaches.

A. Knowledge

Proposal: We propose to extend the Knowledge component
with a model that describes the relationships between the man-
aged system, feedback loop, adaptation goals of the managed
system, and MAGs.
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Implementation: We propose to train a multi-output regres-
sion model, using training data from simulations, that relates
the state of the feedback loop and the managed system as input
to the adaptation goals of the managed system and MAGs as
output.

We acknowledge that the simulated data does not fully
represent real-world values and, consequently, requires contin-
uous updates of the regression model. We propose to integrate
the regression model updates into the feedback loop. This
means that the Analyze component triggers the adaptation of
the managed system and the retraining of the multi-output re-
gression model. To realize the retraining, we propose to collect
the real-world data needed for the retraining during runtime
by the Monitor component and store it in the knowledge base.
Another component should perform the retraining to avoid
affecting the performance of the feedback loop.

For example, in DeltaIoT, the managed system state is
defined by the number of active motes, and the feedback
loop state is defined by the instantiated adaptation strategy,
either ActivFORMS or RQV. The multi-regression model uses
these values as input and provides a prediction of the values
for package loss, energy consumption, adaptation time, and
computational space. Additionally, the simulator by Iftikhar
et al. [8] can be used to obtain training data for the initial
training of the model.
Challenges: Several challenges have to be addressed to obtain
an appropriate regression model.

We need to examine whether the data obtained by the Mon-
itor is suitable input data for the regression model and how
the input needs to be encoded (C1). The quality requirements
of the managed system and MAGs must be encoded so that
they can be predicted by the regression model (C2). Finally,
a machine learning (ML) approach needs to be chosen that
can provide a multi-output regression model that maps system
information to the adaptation goals of the managed system and
MAGs (C3).

To address C1–C3, we propose to use experiments that com-
pare different ML approaches and combinations of encodings
for input and output data. Since the information about the

system and the considered quality goals are system-specific,
we plan to experiment with different systems (A1).

B. Monitor

Proposal: The Monitor component shall be extended to collect
data on the components of the feedback loop.
Implementation: The collected data depends on the managed
system, the adaptation goals of the managed system, and
the MAGs under consideration. These also determine other
data collection characteristics, such as whether a hardware or
software monitor should be used.

The Monitor component for the self-adaptive DeltaIoT
case collects the managed system state, values related to the
adaptation goals, the current adaptation strategy, and values
related to the MAGs.

In our example, the monitoring collects the number of active
motes to observe the managed system and the adaptation
strategy used to observe the feedback loop. In addition, the
monitoring collects data to obtain the current values for the
adaptation goals package loss and energy consumption and the
MAGs adaptation time and computational space.
Challenges: One challenge is to decide which data needs to be
collected and how (C4). If a property that influences the adap-
tation goals of the managed system or MAGs is not measured,
the regression model cannot represent its influence. Measuring
too many properties results in an unnecessary overhead, and
the regression model might learn false relationships.

The implementation of the data collection is system-
dependent and depends on the adaptation goals and MAGs
under consideration since we plan to collect data for retraining
the regression model at runtime. We also need to monitor
the feedback loop as efficiently as possible to ensure the
functionality of the managed system. Thus, we plan to in-
vestigate which already used monitoring approaches from the
performance engineering area can be reused (A2).

The collected data needs to be stored since we want to
use it to retrain the regression model. Thus, we need a
suitable persistence approach that also realizes efficient data
management (C5). A possible solution would be to cluster the



stored data regularly, e.g., using k-means clustering [27], and
keep only selected representatives for each cluster (A3).

C. Analyze

Proposal: We propose to extend the Analyze component in two
ways. Firstly, our regression model should be used to decide
whether an adaptation makes sense regarding the adaptation
goals of the managed system and the MAGs. Secondly, the
quality of the regression model should be evaluated and, if
necessary, a retraining should be triggered.
Implementation: We envision that the Analyze component
must assess whether a possible adaptation improves or at
least meets the desired MAGs and adaptation goals of the
managed system. We consider the current state of the behavior
or structure of the system and the feedback loop and assess
whether any adaptations might lead to a better target state. For
the evaluation of the target states, we plan to use our regression
model. As shown in Figure 1, it relies on information about the
state of the managed system and the feedback loop, as well as
an envisioned adaptation strategy or target state. As output, our
regression model predicts the values of the adaptation goals
of the managed system and MAGs.

The Analyze component must also be able to evaluate the
quality of our regression model used. If the prediction of the
regression model for the given input values deviates too much
from the real-world values, a new training of the regression
model must be triggered.

In DeltaIoT, the Analyze component queries the regression
model to understand whether there is a need for changing the
adaptation strategy. The analyzer queries the regression model
by providing the number of active motes, the number of motes
that should be active to satisfy the managed system adaptation
goals, and the available adaptation strategies (ActivFORMS
or RQV). Consequently, the regression model returns a tuple
of predicted package loss, energy consumption, computation
space, and adaptation time.

Since the regression model returns a vector of values as
a result, a trade-off analysis to assess adaptation options is
necessary. Salama et al. [28] present a catalog of methods
that can be used for trade-off analysis. Many of them are
appropriate for MAGs as well, e.g., utility theory or multi-
objective optimization. The trade-off analysis results in a
model that is called interpretation model and allows to relate
inputs and outputs for optimal adaptation.
Challenges: Our approach results in a more complex analysis
since it has to explore the different target states (C6). Such
exploration can be extremely time-consuming, so we need to
investigate which existing techniques are applicable to prevent
a state space explosion (A4).

More complex MAGs, such as safety or security, require
additional analyses to map these requirements into measurable
values, e.g., the probability of a fault during the execution of
an adaptation (C7). Thus, techniques for carrying out these
analyses as efficiently as possible must be examined (A5).

Our regression model provides one vector of values per
prediction. Thus, to be able to compare the different vectors

obtained for different target states in the Analyze component,
we need an interpretation model (C8). For this purpose, we
plan to investigate existing work on utility functions and the
methods in [28] to realize an interpretation of the values (A6).

We assume that the acceptable deviation between the values
predicted by the regression model and the real-world values
depends on the use case. For example, the deviation for a
safety-relevant system should be smaller than for an online
store (C9). Thus, we need to examine if simulations can help
to define suitable thresholds and how often the quality of the
regression model should be evaluated (A7).

D. Plan

Proposal: We propose to use our regression model in the Plan
component to evaluate the target state and the intermediate
states of an adaptation. This should ensure that intermediate
states also consider the adaptation goals of the managed
system and MAGs.
Implementation: Like the analysis, we need an interpretation
model (cf. C8) for the Plan component that helps to evaluate
the various possible intermediate states of the system during its
adaptation. To realize this, we plan to reuse our interpretation
model from the Analyze component.

In the DeltaIoT example, an adaptation can consist of adding
further motes and changing the adaptation strategy. To realize
such a multistage adaptation, several steps are necessary,
which lead to intermediate states that should also fulfill all
goals as optimally as possible. For example, it may be better
to switch the adaptation strategy first and then integrate more
motes into the system since as the number of motes increases,
the computational space of ActivFORMS increases likewise
and makes it unfeasible to generate plans.
Challenges: Since evaluating all possible intermediate states
requires a state space exploration, countermeasures must be
taken, as in the Analyze component, to prevent an explosion
of the state space (C10). We plan to examine the application
of reuse mechanisms to reuse (partial) solutions (A8). Addi-
tionally, plans that already compromise the adaptation goals
and MAGs should be detected at an early stage of the state
space exploration and should be discarded (A9).

E. Execute

Proposal: The Execute component carries out the adaptation
and the retraining of the regression model.
Implementation: The Execute component must be extended
so that it can (i) adapt the managed system and (ii) update the
regression model. Since both types of changes can occur si-
multaneously, the Execute component must be able to execute
them in parallel.

In our example, the execution of an adaptation can affect
three different components. i) The managed system by adding
or removing motes. ii) The feedback loop by changing the
adaptation strategy. iii) The regression model, which is re-
placed after retraining.
Challenges: Since it is possible that retraining the regression
model is necessary while the managed system is adapting, the



execution phase must be able to be parallelized (C11). Thus,
we plan to examine which existing parallelization techniques
can be reused (A10).

VI. CONCLUSION

In the past, requirements engineering for self-adaptive sys-
tems has mainly focused on adaptation goals of the managed
system. However, in practice, requirements of the feedback
loop are often just as crucial for the overall quality of self-*
systems. To this end, we propose modeling meta-adaptation
goals as first-class citizens.

We describe the steps needed to arrive at our vision by
elaborating on 11 challenges along with proposed approaches.
Concretely, we propose using a regression model that maps
monitoring data about the managed system and the feedback
loop to corresponding quality measures. We enrich the Analyze
and Plan components with our regression model so that they
find a suitable trade-off between the optimization of adaptation
goals and meta-adaptation goals.

Overall, our proposed approach can contribute towards self-
adaptive systems that better meet their stakeholders’ needs.
Systems that consider meta-adaptation goals can trade off the
adaptation overhead against the expected increase in the qual-
ity of the managed system. This enables self-adaptive systems
to avoid unnecessary, instable, or overly costly adaptations and
thereby become more effective and robust.
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