
Explaining Quality Attribute Tradeoffs in Automated

Planning for Self-Adaptive Systems

Rebekka Wohlraba,b,∗, Javier Cámarac, David Garlanb, Bradley Schmerlb

aChalmers | University of Gothenburg, Gothenburg, Sweden
b Software and Societal Systems Department, Carnegie Mellon University,

Pittsburgh, USA
cITIS Software, University of Málaga, Málaga, Spain

Abstract

Preprint — Accepted for publication at the Journal of Systems and Software.

Self-adaptive systems commonly operate in heterogeneous contexts and need
to consider multiple quality attributes. Human stakeholders often express
their quality preferences by defining utility functions, which are used by self-
adaptive systems to automatically generate adaptation plans. However, the
adaptation space of realistic systems is large and it is obscure how utility
functions impact the generated adaptation behavior, as well as structural,
behavioral, and quality constraints. Moreover, human stakeholders are of-
ten not aware of the underlying tradeoffs between quality attributes. To
address this issue, we present an approach that uses machine learning tech-
niques (dimensionality reduction, clustering, and decision tree learning) to
explain the reasoning behind automated planning. Our approach focuses on
the tradeoffs between quality attributes and how the choice of weights in
utility functions results in different plans being generated. We help humans
understand quality attribute tradeoffs, identify key decisions in adaptation
behavior, and explore how differences in utility functions result in different
adaptation alternatives. We present two systems to demonstrate the ap-
proach’s applicability and consider its potential application to 24 exemplar
self-adaptive systems. Moreover, we describe our assessment of the trade-
off between the information reduction and the amount of explained variance
retained by the results obtained with our approach.

∗Corresponding author
Email address: wohlrab@chalmers.se (Rebekka Wohlrab)

Preprint submitted to Journal of Systems and Software October 17, 2022

Keywords: Explainable software, automated planning, self-adaptation,
quality attributes, non-functional requirements, principal component
analysis, clustering, decision tree learning

1. Introduction

Self-adaptive systems are becoming increasingly used in a variety of con-
texts and need to consider multiple quality attributes (e.g., security, safety,
energy consumption, cost, and performance). An important step for these
systems is to plan adaptations to changes in their environment at run time.

Consider, for instance, a robotic system that performs a variety of tasks
(e.g., delivering items, visiting a number of locations, or assisting humans
in their work). In certain situations, speed might be extremely relevant,
whereas other contexts might require the system to be energy-efficient and
safe. When planning adaptation behavior, quality-related preferences and
constraints need to be taken into account, which often requires making trade-
offs among quality attributes. For instance, a robotics system cannot travel
at a high speed and be extremely energy-efficient at the same time, which
is why stakeholders need to prioritize these quality attributes and possibly
specify constraints (e.g., to prohibit the robot from going below a certain
battery level).

Quality-related preferences and constraints are often encoded in a utility
function whose value should be maximized by the system. Multiple ap-
proaches to engineering self-adaptation employ utility functions to capture
user preferences and constraints, which are often defined as weighted sums
of objectives [1, 2]. These utility functions are used in the planning process,
which is commonly facilitated by automated planning techniques, e.g., using
probabilistic planning [3, 4, 5, 6]. Given an initial state, a set of possible ac-
tions, intermediate states, and a utility function, these techniques compute
policies which indicate the sequences of actions a system should perform to
arrive at a goal state. When performing multi-objective policy synthesis,
e.g., using probabilistic model checking, it is often the case that a number of
Pareto-optimal solutions exist, in which all policies are known to meet the im-
posed quantitative and behavioral constraints. Among those Pareto-optimal
solutions, one solution has to be selected that optimizes the objectives in
the most appropriate manner for a given situation/context. To define a util-
ity function that can be used to select a solution, human preferences are

2

needed [7]. For realistic systems, however, the state and action spaces are
typically large (and may contain hundreds of thousands of states [8]), which
makes it difficult for human users to verify that a utility function correctly
captures their needs and leads to desirable policies being generated.

Human decision makers need tools and techniques to help them under-
stand the tradeoffs of complex decision spaces and guide them to good utility
functions and preference specifications, enabling them to answer questions
such as: Why are these policies being generated, and not others? What are
the underlying tradeoffs among quality attributes? How sensitive to changes
in prioritization is the satisfaction of constraints or the achievement of op-
timality? Which are the key choices that drive the most important changes
in adaptation behavior? What categories of adaptation behavior exist and
what are their characteristics? What changes in the utility function would
lead to different kinds of adaptation behavior being generated?

When aiming to address these questions, identifying the important char-
acteristics of planning is similar to the common machine learning problem of
ascertaining the distinguishing features of high-dimensional spaces. There-
fore, we leverage machine learning techniques in our approach to explain the
underlying reasoning behind automated planning with a focus on quality-
related concerns. Our approach is based on a combination of machine learn-
ing techniques: principal component analysis (PCA) [9], multiple correspon-
dence analysis (MCA) [10], k-means clustering [11, 12], and decision tree
learning (DTL) [13]. These methods are complementary: PCA and MCA are
dimensionality reduction techniques that can be useful in explaining variances
in large datasets; k-means clustering is useful to investigate patterns/clusters
in the generated policies; and DTL is a method (broadly employed in data
mining) that helps to predict the value of a target variable based on one or
more input variables. As we argue in this paper, the combination of these
techniques can help human stakeholders to understand how differences in
utility functions might result in differences in the adaptation behavior being
generated.

We present two example systems and scenarios to demonstrate the ap-
plicability of our approach, as well as provide guidelines for human decision
makers aiming to leverage the approach. To indicate the required effort of
applying our approach to other systems, we discuss the necessary data col-
lection and preparation steps for 24 exemplars for self-adaptive systems.

The remainder of this paper is structured as follows: Section 2 presents
an example of automated planning to motivate the importance of explain-

3

2 3

4 5

1
Occluded path segment

Partially occluded path segment

Private location

Semi-private location

1 1

1

3

1.414

Start

Goal

Figure 1: Example of a robot mission planning scenario

ing quality attribute tradeoffs. Section 4 introduces our approach, Section 5
describes how we leverage the selected machine learning techniques, and 6.2
describes our evaluation. We present related work in Section 7 and a discus-
sion of our findings in Section 8. We conclude this paper in Section 9.

2. Example: Robot mission planning

Although our technique applies to a large range of self-adaptive systems,
the example we consider in this paper is a robot mission planning scenario, in
which a robot needs to find an optimal navigation path from a start location
to a goal location. We selected this example since automated planning is
frequently used in the robotics domain and it is crucial that users understand
robot mission plans to facilitate human-robot interaction [8, 14]. Figure 1
shows an illustration of this scenario. The robot is currently at its start
location 1 and should move to the goal location 5 . It can choose several

paths and drive through multiple locations, some of which are private (2) or

semi-private (3). Moreover, some paths between locations are occluded or

partially occluded by obstacles (e.g., the path between 2 and 3 is partially
occluded). The robot should arrive as quickly as possible, avoid collisions,
and be as unintrusive as possible (i.e., due to privacy concerns avoid areas
that are occupied by humans). The robot is aware of its speed and location
on the map. It has sensors to detect collisions with obstacles, and can adjust
its speed (which can also reduce the probability of collisions) and select the
path it should follow. In this example, a policy consists of state-action pairs
that indicate how a robot would move from the initial state to the goal state.
Each state consists of the robot’s location and speed. Actions can either
result in a changed speed (setSpeed(...)) or in a changed target location

4

(moveTo(...)). For the sake of simplicity, we consider a fixed speed of 1 in
this example. We define the utility function as a weighted sum of relevant
objectives whose costs should be reduced (i.e., travel time, collisions, and
intrusiveness) [15, 16, 17, 18]. In this case, the utility function for a policy σ
would be:

u(σ) = wt · ut(φt(σ)) + wc · uc(φc(σ)) + wi · ui(φi(σ)) (1)

The utility function of σ is the weighted sum [19] of the utilities for travel
time (ut), collisions (uc), and intrusiveness (ui). Each of the individual utility
functions u∗ map the domain of the corresponding variables to the range
[0, 1]. In the expression, φ∗ denotes functions that return the quantified travel
time, collisions, and intrusiveness of σ, respectively. Weights w∗ indicate the
importance of the quality attributes and sum to 1.

To illustrate the difficulty of performing quality attribute tradeoffs and
understanding utility functions, we can calculate the costs (of travel time,
collisions, and intrusiveness) and their respective utilities in our example
planning problem. Table 1 shows an example of the alternative paths (either

via 2 and 3 or via 4), their costs, and utilities depending on the utility
function weights. For this example, we assume that the cost of travel time
φt(σ) is equivalent to the distance between locations (the distance of the
horizontal and vertical path segments is assumed to be 1, the distance of the
diagonal path segment between 3 and 5 is

√
2 = 1.414, and the distance

between 4 and 5 is 3). Moreover, we assume that the expected cost
φc(σ) of a collision is 1 for a partially occluded and 2 for an occluded path
segment, respectively, and 0 for non-occluded path segments. The cost of
intrusiveness φi(σ) is 1 for every semi-private location the robot visits and 2

for every private location that is traversed. From the start location 1 , the

path via 2 and 3 would cost 3.414 in terms of travel time, 1 in terms of

collision, and 3 in terms of intrusiveness. The path via 4 is longer than the

other path (cost 4 for travel time), is occluded between 1 and 4 (i.e., cost
2 in terms of collision), and is not intrusive (cost 0).

To define the local utility functions u∗, we aim to capture how far away
from the ‘worst’ or ‘most expensive’ value the costs in the three dimensions
are. In terms of travel time, 4 is the maximum cost when traveling from
the start to the goal location. In terms of collision, the maximum cost of the
possible paths is 2 (with one occluded edge). For intrusiveness, the maximum

cost is 3 (given that both 2 and 3 are non-public). For the local utility

5

Table 1: Example paths and their costs depending on utility function weights

Weights Locations Optimal Costs Utilities
wt wc wi φt φc φi ut uc ui u

1 0 0 2 , 3 3.414 1 3 0.147 0.5 0 0.147

4 4 2 0 0 0 1 0

0.33 0.33 0.33 2 , 3 3.414 1 3 0.147 0.5 0 0.215

4 4 2 0 0 0 1 0.333

0 0.5 0.5 2 , 3 3.414 1 3 0.147 0.5 0 0.25

4 4 2 0 0 0 1 0.5

0 1 0 2 , 3 3.414 1 3 0.147 0.5 0 0.5

4 4 2 0 0 0 1 0

0.5 0.5 0 2 , 3 3.414 1 3 0.147 0.5 0 0.323

4 4 2 0 0 0 1 0

0 0 1 2 , 3 3.414 1 3 0.147 0.5 0 0

4 4 2 0 0 0 1 1

0.5 0 0.5 2 , 3 3.414 1 3 0.147 0.5 0 0.073

4 4 2 0 0 0 1 0.5

functions, we are interested in the ratio of our actual cost and the maximum
cost in one dimension. We subtract that ratio from 1 to indicate that a lower
ratio is what is desirable and leads to higher utility. We define the local
utility functions in our example as follows:

ut(x) = 1− x

4
uc(x) = 1− x

2
ui(x) = 1− x

3
(2)

When using an automated planner for this example scenario, the weights
of the utility function (and the prioritization of quality attributes) would
determine which path is chosen. In Table 1, it can be seen that different
paths would be chosen depending on the weights of travel time, collision,
and intrusiveness, along with the cost. If travel time is the only important
quality attribute (wt=1), the planner would choose the path via 2 and

3 (as it is shorter). In contrast, if intrusiveness is the only important

6

quality (wi=1), the planner would select the path via 4 as the optimal one.
Clearly the preferences over quality attributes expressed in the weights have
a substantial impact on the actual path that would be chosen by a planner.

In the two examples mentioned above, it is clear why the planner chose
a given path as optimal in the different contexts. However, what would
happen if all quality attributes are equally important (w∗=0.333)? In this

case, the planner would select the path via 4 in our example, but why did
that happen? And does that selection really fulfill stakeholder needs?

Ideally, we would like our planner to select a non-intrusive, non-colliding
path that is extremely short. However, it is unlikely that the requirements
of non-intrusiveness, collision avoidance, and short travel time can all be
completely fulfilled; instead, tradeoffs need to be made and it has to be
decided for a specific situation what the important quality attributes are.

It can be seen that even in such a simple example, it can be difficult to
reason about path planning problems and state how utility function weights
should be chosen. Our approach aims to address this challenge by mak-
ing the planning process and quality attribute tradeoffs more explainable to
humans.

3. Automated Planning with Markov Decision Processes

Before describing the steps of our approach, we present some concepts re-
lated to the formalism employed for automated planning in the instantiation
of our approach.

The planning problem domain is described as a Markov decision process:

Definition 3.1 (Markov decision process). A Markov decision process (MDP)
over a set of atomic propositions AP is a tupleM = (S, sI , A,∆, L,R), where
S 6= ∅ is a finite set of states; sI ∈ S is the initial state; A 6= ∅ is a finite
set of actions; ∆ : S×A→ Dist(S) is a partial probabilistic transition func-
tion that maps state-action pairs to discrete probability distributions over S,
L : S → 2AP is a labelling function that maps every state s ∈ S to the atomic
propositions from AP that hold in that state; and R is a (possibly empty) set
of (reward/cost) functions ρ : S → R≥0 that associate non-negative values
with states of the MDP1.

1While generally, reward functions can also be associated with actions ρ : A → R≥0,
we consider only those that are associated with states in this paper.

7

In each state s ∈ S, the set of actions a ∈ A for which ∆(s, a) is de-
fined contains the actions enabled in state s, and is denoted by A(s). The
choice of which action from A(s) to take in some states is assumed to be
nondeterministic.

We can reason about the behavior of MDPs using policies. A policy
resolves the nondeterministic choices included in a MDP, selecting the action
to take in states where |A(s)| > 1. Although there are multiple classes
of MDP policies, in this work, we use deterministic memoryless policies as
implemented in off-the-shelf probabilistic model checkers like PRISM [20]
and Storm [21] (called simply ‘policies’ in the remainder of the paper).

Definition 3.2 (MDP policy). A (deterministic memoryless) policy of an
MDP is a function σ : S → A that maps each state s ∈ S to an action from
A(s).

To synthesize policies that satisfy constraints and optimize objective func-
tions (defined over, e.g., quality attributes such as timeliness, safety, etc.),
probabilistic model checkers can employ formulas specified in probabilistic
temporal logics like PCTL [22, 23], which are used to quantify properties re-
lated to probabilities and rewards in system specifications modeled as MDPs.

Definition 3.3 (PCTL formulae). State PCTL formulae Φ and path PCTL
formulae Ψ over an atomic proposition set AP are defined by the grammar:

Φ::= true |α |Φ∧Φ | ¬Φ | P∼p[Ψ] |Rρ
∼r[C

≤k] |Rρ
∼r[FΦ]

Ψ::=XΦ | Φ U Φ | Φ U≤k Φ
(3)

where α ∈ AP is an atomic proposition, ∼∈ {≥, >,<,≤} is a relational
operator, p ∈ [0, 1] is a probability bound, r ∈ R+

0 is a reward bound, k ∈ N>0

is a timestep bound, and ρ ∈ R is a reward/cost function.

The semantics of the probability P and reward R operators are defined
over all policies σ of M as follows: P∼p[Ψ] specifies that the probability
that paths starting at a chosen state s satisfy a path property Ψ is ∼ p for
all policies; Rρ

∼r[C
≤k] holds if the expected cumulated reward for ρ up to

time-step k is ∼ r for all policies; and Rρ
∼r[FΦ] holds if the expected reward

accrued for ρ before reaching a state that satisfies Φ is ∼ r for all policies.
Replacing ∼ p (or ∼ r) from (3) with min =? or max =? specifies that the
calculation of the minimum/maximum probability (or reward) over all MDP
policies is required.

8

In our example, we can encode, for instance, a PCTL formula that op-
timizes the utility associated with the timeliness of the robot’s arrival at
location L5 in the map as Rut

max=?[FLoc = L5], where ut ∈ R is a util-
ity function for timeliness encoded as a reward/cost function, and Loc is a
state variable that corresponds to the robot’s location in the MDP. For a full
description of the PCTL semantics, see [22, 23].

Data Generation. To explore the policy space of an automated planning
problem, our approach requires executing an automated planner (e.g., the
probabilistic model checker PRISM) repeatedly, with different combinations
of utility function weights and parameter values (i.e., using uniform distri-
butions over the space of utility function weights).

The inputs provided to the planner are formalized under the notion of
policy exploration profile.

Definition 3.4 (Policy exploration profile). A policy exploration profile is a
tuple (M,W,CΦ, U,Π), such that:

• M is a Markov decision process model encoding the planning domain.

• W ⊆ P([0, 1]n) is a set of tuples that capture various utility weight
combinations, where n is the number of utility dimensions considered.
For any w = (w1, ..., wn) ∈ W,

∑n
i=1wi = 1.

• CΦ is a set of PCTL formulae, each of which encodes the cost function
that corresponds to a dimension of concern (e.g., timeliness, energy
consumption).

• U ⊆ P(Rn
≥0 → [0, 1]n) is a set of utility functions that map costs in a

given dimension of concern to the range [0, 1].

• Π : P → P(D) is a function that assigns sets of symbols typed by a
fixed set D to a set of parameters P required as input to the planning
problem (e.g., state variable initialization values such as the starting
position of the robot).

From a policy exploration profile τ = (M,W,CΦ, U,Π), the automated
planner generates as output a set of tuples of the form (σ, uσ, u

g
σ), where:

• σ is a MDP policy computed as σ = fσ(τ.Mπ, φc).p, where π ∈ τ.Π is
an assignment of parameter values for modelM, φc ∈ τ.CΦ is a PCTL

9

formula encoding the cost function for a given dimension of concern,
and fσ(∗).p designates the model checking function that synthesizes a
policy from a MDP model and a PCTL property.

• uσ ∈ [0, 1]n contains the utility values for the different dimensions
of concern. For dimension i, its utility value is computed as uσi =
ui(fσ(τ.Mπ, φc).r), where ui ∈ U is the utility function for dimension
i and fσ(∗).r designates the model checking function that quantifies a
cost function encoded as a PCTL property for a MDP model.

• ugσ is the global utility of policy σ, calculated as the weighted sum of
utilities in uσ, i.e., ugσ =

∑n
i=1 wi · uσi.

4. Approach

This section describes our approach, with a focus on how we integrate
several methods to explain quality attribute tradeoffs. The approach has
been designed to fulfill the requirements that we outline in Section 4.1 with
the methodology and tool support described in Section 4.2. We provide a
high-level description of the employed machine learning techniques in Sec-
tion 4.3. Our approach relies on data filtering and extraction. We describe
these steps in Section 4.4.

4.1. Requirements

This subsection describes the requirements for our approach for explaining
quality tradeoffs. Challenges with automated planning stem from the large
state space of the planning problem (that makes it difficult to distinguish im-
portant variables from less important ones) [8]. Moreover, the large amount
of possibly generated plans is hard to analyze for human stakeholders. When
analyzing the actions of a plan, it is often obscure what the underlying qual-
ity tradeoffs of this plan are and what alternative actions would have been
possible. It is also challenging for humans to understand how input vari-
ables (e.g., utility function weights) need to be selected to generate desirable
plans. While approaches for utility function definition have been proposed in
the past [7], it is often unclear to human stakeholders how a defined utility
function impacts the generated planning policies. Our approach for quality
tradeoff explanations aims to address this issue. We developed the following
list of requirements and apply a variety of machine learning techniques to
fulfill them in our approach. The explainability approach should:

10

1. give general insights into which variables (e.g., utility function weights,
costs) are important to differentiate policies and analyze their relations;

2. enable stakeholders to identify strategies, i.e., high-level collections of
policies sharing similar characteristics;

3. help to analyze how differences in utility function weights impact the
generated policies;

4. support the analysis of quantitative data (for cost and utility weight
variables) and categorical data (for policy actions).

Insights into important variables and their relations (1) are needed to de-
termine how strongly different quality attributes impact differences in poli-
cies (and if there exist any tradeoffs between quality attributes). To better
understand the impact on policy actions, a categorization of policies into
high-level collections (2) is required, so that humans do not need to reason
directly about policy actions but can analyze more general strategies. An
additional aspect is the role of utility function weights (3), whose impact is
often obscure to stakeholders and needs to be clarified to help humans to
correctly indicate their quality preferences [7]. Finally, given that we have a
variety of variable types (4), support to analyze both quantitative and cate-
gorical data is required. Quantitative variables represent data as numerical
values. Categorical variables assign one (qualitative) value of a fixed set of
possible values to each policy [24] and express properties in terms of values
of enumerations, rather than as discrete or continuous numerical values.

To be useful in practice, the problem space of the planning context should
be sufficiently large. Based on our experiences with the systems in this paper,
the number of samples should be at least 200 and the number of variables
no less than 50. These thresholds are easily met by most automated systems
today.

As part of our approach, we apply a combination of Principal Component
Analysis (PCA), Multiple Correspondence Analysis (MCA), clustering, and
decision tree learning (DTL). Details about the employed machine learning
techniques will be presented in Section 5.

When applying machine learning methods, dimensionality reduction tech-
niques are commonly applied in combination with other techniques. For
instance, combining dimensionality reduction and k-means clustering tech-
niques can help to explore correlations and patterns in a dataframe [12].
However, to the best of our knowledge, this combination of methods has not
been applied to explain quality tradeoffs in automated planning.

11

Table 2: Selection of techniques to meet different information needs

Category Information need Technique(s)
in our
approach

IN1 General General understanding of variables, their
contributions, and correlations

PCA, MCA

IN2 General Exploration of categorical variables and their
contributions/relationships

MCA

IN3 Key decisions Analysis of which state-action pairs are
impacted by a change to utility function weights

MCA

IN4 Strategies Identification of clusters (collections of policies
that share similar characteristics) and their key
attributes

Joint k-means
clustering and
PCA/MCA

IN5 Utility function
weights

Thresholds (e.g., in utility function weights)
and how they impact policies

DTL

IN6 Cost/utility
prediction

Expected costs/utilities depending on how
utility function weights are chosen

DTL

Table 2 shows an overview of the information needs that are addressed
by our approach and the specific techniques we recommend. To address re-
quirement (1), we support general information needs (to explore variables,
their contributions, and correlations) using PCA and MCA. PCA helps to
focus on tradeoffs between quantitative variables, whereas MCA is useful to
explore categorical variables and their relations. An example of a quanti-
tative variable is the expected number of collisions that occur in a robot
mission. An example of a categorical variable is the encoding of a decision
that can be taken in a specific state (e.g., to move to another location or
change the robot’s speed). Using these dimensionality reduction techniques,
the requirement to support quantitative and categorical data analysis is ad-
dressed (requirement 4). In particular, MCA can help users to detect actions
impacted by a change to utility function weights. Moreover, using MCA,
stakeholders can investigate which decisions are typically taken together and
how they are connected to utility function weights and costs. Addressing
requirement (2), we apply joint k-means clustering and PCA/MCA to iden-
tify clusters of policies (or strategies) that share similar characteristics, as
well as their key attributes (e.g., the most frequent/infrequent values for cat-
egorical variables, percentages of policies that belong to a cluster, and the
means of quantitative variables). To fulfill requirement (3), decision trees are

12

useful to explore specific thresholds of utility function weights that distin-
guish different policies. They can also be leveraged to predict the expected
costs/utilities (in total or related to specific quality attributes) depending on
particular decisions or utility function weights.

4.2. Methodology and Tool Support

To apply our approach in practice, an implementation of a system needs
to be in place, so that relevant data can be collected. The implementation can
be at a prototype level or a final system. The crucial point is that it should
be possible to specify a planning problem and execute a policy synthesizer
(e.g., PRISM model checker [20]). The planning problem is specified in the
form of a Markov decision process (MDP), encoded in a plain text file. The
MDP specifies one reward/cost structure per quality attribute and also a
cost structure for the total cost, factoring in the different costs/rewards of the
three quality attributes as a weighted sum using utility function weights. The
MDP is used to generate policies that can be saved in a tabular format (e.g.,
using a csv file). In our examples, we performed uniform sampling of different
combinations of utility function weights, but other sampling strategies are
applicable as well. Instead of utility functions, for instance, priority values
for non-functional requirements [25] can be used to capture the priorities of
different quality attributes. The dataframe should have a sufficiently large
number of samples to apply the machine learning algorithms (i.e., no less than
200). Once a dataframe file has been created, it can be input into appropriate
statistics tools (e.g., R [26]) and analyzed to generate explanations in the
form of graphical plots.

The graphical plots can be created by following a sequence of steps. Fig-
ure 2 shows an overview of our approach, which receives as input:

I1. a planning problem specification described by domain experts (e.g.,
modeled as a Markov decision process – MDP), and

I2. a set of utility functions and weights (or priorities) specified by various
stakeholders.

I1. can be expressed as a plain text file containing a high-level model of an
MDP (e.g., that can be processed by PRISM [20]) and I2. can be expressed
as a list of utility function weight combinations. Each utility function weight
combination from I2. is used to generate an individual MDP, using the utility
function weights when generating the total reward/cost structures.

13

Domain

experts

Stakeholders

S1. Policy space
exploration
[PRISM]

Policies Costs

O2.2. Variable
contributions

O2.1. Variable
relations

I1. Planning
problem
spec.

I2. Utility
functions,
weights

Inputs

Outputs

Data extraction

Data filtering
Relevant variable
correlations

S5. Decision tree
learning [R]

S3. Joint dimen-
sionality reduction and
k-means clustering [R]

O1. Strategies
(Policy clusters
and attributes)

Requires human inputH

H

H

H

O3. Key decision
impact

Principal
component analysis

[R]

Multiple
correspondence
analysis [R]

H

H

S2

S2

S4

Figure 2: Overview of our approach

This adjustment is performed in a Java program. The code and scripts
can be found in our Github repository2. As mentioned before, for the exam-
ples in this paper, we used uniform sampling and iterated over combinations
of utility function weights with two loops. After creating an MDP, it uses
the PRISM API to execute the model checker.

To facilitate understanding the solution space and how stakeholder pref-
erences affect the outcome of the planning process, our approach provides
the following outputs:

O1. a set of strategies (policy clusters and attributes) that enables stake-
holders to understand the various coarse-grained kinds of adaptation
behavior that exist within the solution space (e.g., collision-avoidant
vs. intrusiveness-avoidant), rather than requiring stakeholders to rea-
son about numerous individual policies,

O2. a set of variable relations (e.g., a strong preference for reducing travel
time results in a lower number of collisions), as well as of variable
contributions to quality variation in the solution space, and

O3. a set of key decision impacts that helps to explain how the selection of
specific values for key variables results in differences in the generated
policies.

The approach consists of the following steps (cf. Figure 2):

2https://github.com/cmu-able/planningTradeoffExplanations

14

https://github.com/cmu-able/planningTradeoffExplanations

S1. Policy space exploration, which consists of generating a set of poli-
cies that optimize different selections of utility preferences captured
by varying weights. These policies (and their costs along the different
quality dimensions) can be generated using an automated planner (e.g.,
PRISM [20]).

S2. Data filtering and extraction are employed for selecting candidate vari-
ables and extracting their values, preparing the data for subsequent
processing steps. This step may require the input of a domain expert,
who has to curate the set of candidate variables and extraction mecha-
nisms, which can be reused across the same class of planning problem.
This step produces as output two sets of data frames that are used
as input to PCA and MCA, respectively. For PCA, data frames con-
tain exclusively quantitative variables, whereas those for MCA contain
mainly categorical variables, which can sometimes be complemented by
quantitative variables.

S3. Joint dimensionality reduction and k-means clustering employs both
PCA and MCA to find variables that contribute in a meaningful way
to QoS variation across the solution space, as well as their relations (i.e.,
the extent to which they are positively/negatively correlated). Using
the results provided by PCA and MCA, this step applies a reduction
and k-means clustering technique [12] that results in the elicitation of
policy clusters (i.e., collections of policies that share similar character-
istics), along with data on what the optimal number of clusters is and
what key attributes distinguish a cluster from others.

S4. Data filtering based on variable relations selects relevant variable corre-
lations (i.e., those that are meaningful in terms of contribution to QoS
variation), which can be employed as input to the next step. This step
requires the input of a domain expert, whose decisions are informed by
the output artifacts generated in the previous step.

S5. Decision tree learning is used to arrive at the key decision variables
that help to explain how the selection of concrete values for variables
results in differences in the generated policies.

In our implementation, S1. is performed using PRISM [20] and all subse-
quent steps are conducted using R [26]. For S2., humans might need to adjust
the dataframes and select which variables are categorical/numerical, as well
as which variables should be used for decision tree learning. The outputs of
these steps are PDF files containing plots. These plots can be leveraged by

15

humans to understand tradeoffs. The examples in this paper and the pro-
vided explanations indicate how to read these plots. In the future, we plan
to provide further support for non-expert users (see Section 9).

While we use PRISM [20] and R [26] for the implementation, the ap-
proach we present in this paper can be supported with a variety of tools,
depending on the concrete domain and system. In Section 8, we discuss the
required steps to apply our approach to the exemplars for self-adaptive sys-
tems curated by the Software Engineering for Adaptive and Self-Managing
Systems (SEAMS) community. In our implementation, we rely on R [26],
since it is free, open source, and available on a variety of platforms. To facil-
itate replication, we provide example dataframes and R scripts that can be
used to generate the plots presented in this paper3.

4.3. Selected Machine Learning Techniques

This section introduces the machine learning methods that are part of
our approach: PCA, MCA, k-means clustering, and decision tree learning.

Principal Component Analysis (PCA). PCA [9] is a statistical procedure
used to reduce the dimensionality of datasets consisting of a large number of
interrelated variables. The technique involves computing so-called principal
components based on the data, which are new variables that indicate the
directions in which the samples described by the variables differ. A princi-
pal component is a linear combination of the original variables that explains
some of the variance in the data. The first principal component (PC1) carries
the most information regarding the differences between samples in the data,
the second principal component explains the most variance not covered by
the first one, and so on. It is often the case that only the first two principal
components carry relevant information [9]. The output of PCA includes (i)
the percentage of total variance of the dataset explained by each principal
component, (ii) correlation loadings, which describe how much variables con-
tribute to explained variance, as well as their relationships, and (iii) scores,
describing properties of the samples. In this paper, we are mainly concerned
with variances and loadings, focusing on how much information is explained
by the principal components and how variables are related to each other.

In the high-dimensional planning space for self-adaptive systems, PCA
can be leveraged to visualize correlations between variables (e.g., utility

3https://github.com/cmu-able/planningTradeoffExplanations

16

https://github.com/cmu-able/planningTradeoffExplanations

function weights) and indicate how variables contribute to the differences
in samples (i.e., generated policies).

Multiple Correspondence Analysis (MCA). Similar to PCA, MCA is a dimen-
sionality reduction technique [10]. MCA is applicable for categorical data.
The decisions in our policies (e.g., that the robot should move to location
L2 after visiting location L1) are encoded in categorical variables describing
state-action pairs, which makes MCA an appropriate technique for analyzing
policy data. While the focus is on categorical data, it is also possible to add
supplementary quantitative variables when performing MCA. Variables and
samples can be mapped into coordinates on principal axes. These axes are
similar to principal components in PCA and help to explain the variance in
the data, with the first axis being the most important to explain variance,
the second axis being orthogonal to it and accounting for the second-most
amount of explained variance, and so on. The output of MCA includes (i)
the percentage of variances explained by each of the dimensions (axes), (ii)
coordinates and contributions of categories, which describe how much each
categorical variable contributes to the dimensions, as well as their relations,
and (iii) coordinates and contributions of samples, describing properties of
the samples.

Clustering Algorithms. Clustering is concerned with making sense of data
by categorizing data points into collections that share similarities. k-means
clustering (an unsupervised learning technique) is a widely used clustering
technique and involves discerning k clusters in which every data point is al-
located to the cluster with the nearest mean. We apply k-means clustering
in combination with PCA and MCA [11, 12] due to its potential of retaining
as much variance as possible in as few dimensions as possible, while cal-
culating and describing clusters of policies in the data. Reasoning about
policies in terms of clusters is helpful for humans to understand patterns
and characteristics of different categories of policies. The technique for joint
dimensionality reduction and clustering requires the selection of parameters
k (i.e., the number of clusters) and the number of dimensions n to consider
for PCA and MCA. To select k and n, it is possible to calculate for what
parameter values the clusters are most compact and the structure of clusters
most well-separated using the so-called average silhouette width index [12].
In our approach, we calculated the average silhouette width index for differ-
ent cluster sizes to select k. There exist multiple evaluation techniques for

17

wt

wc

wi

φt

φc

φi

ut

uc

ui

u

nsteps

nmoveTo

ndecSpeed

nincSpeed

σL1

σL2

σL3

σL4

...

pr(L1)
pr(L2)
...

oc(L1, L2)
oc(L1, L4)
...

1
0
0

3.414
1
3

0.147
0.5
0
0.147

PUBLIC

PRIVATE

...

L2
L3
L5
“”

...

CLEAR

SEMI-OCC.

...

3
3
0
0

0

1

...

1
1
1.414
0
...

cat.

cat. cat. num.num.

num.

0

2

...

Figure 3: Sample encoding of a policy for our robot mission planning example

clustering algorithms [27]. We manually labeled the samples in our dataset
to calculate the precision, recall, and F1 scores of the algorithms. To evalu-
ate the distance between clusters, we use the average silhouette width index,
since it indicates how similar a policy is to other policies in its cluster and
how different it is to other clusters [28].

Decision Tree Learning. Decision tree learning is a supervised learning tech-
nique that predicts the value of a variable based on the values of other vari-
ables [13]. In our case, we apply decision tree learning both to grow classi-
fication trees (to be able to predict what decision is taken when the system
is in a certain state) and regression trees (e.g., to predict costs in different
quality dimensions, depending on actions taken by the system).

Summary. To summarize, we have outlined the employed machine learning
techniques of our approach: PCA, MCA, clustering, and decision tree learn-
ing. PCA [9] and MCA [10] are dimensionality reduction techniques used to
focus the analysis on key components/dimensions that describe the differen-
tiating features in the data. These dimensionality reduction techniques are
combined with clustering algorithms [11, 12] to identify strategies (collections
of policies with similar characteristics). To perform a fine-grained analysis
of those strategies, decision tree learning [13] is used to indicate variable
thresholds (e.g., in utility function weights) and their impact on policies.

4.4. Data Filtering and Extraction

Our approach requires human input for data filtering and extraction.
Concretely, human input is required to select relevant variables for a specific
system and how they should be represented in dataframes. The data is

18

gathered in two types of dataframe4, one containing a mix of categorical
and numerical variables (for MCA) and the other one containing numerical
variables only (for PCA). Figure 3 shows an excerpt of the extracted data
of a policy for our robot mission planning example. In the following, we
leverage this example to explain how policy data is encoded.

To extract the data that corresponds to the columns that characterize a
policy in a dataframe (MCA or PCA), we define the notion of policy encoding,
which is just a specification of the action selections made by the policy at
each of the decision points (i.e., nondeterministic choices) in the MDP:

Definition 4.1 (Policy encoding). The encoding of a policy σ : S → A,
denoted henceforth by e : S × A → S × A, is a projection of the policy
that only enumerates state-action pairs in which action selection has been
performed in the original MDP M = (S, sI , A,∆, L,R), i.e., e(σ) = {(s, a) :
σ | |A(s) > 1|}.

The tables in the top left in Figure 3 represent the utility function weights
w∗ ∈ xW , the costs for different quality attributes φ∗ ∈ xC , and the utilities
u∗ ∈ uσ (as introduced in Section 2). The policy in Figure 3 is encoded
in σ∗ ∈ xE, where σs describes the action to be taken in a state s. In our
example, we consider a fixed speed of 1 and the state is defined by a location
on the map. In the context of other robot planning scenarios, the state might
be defined, e.g., by a pair describing the location and the robot’s speed.

Once we have defined the encoding of a policy, we build upon it to de-
scribe our categorical dataframe for MCA. The categorical dataframe con-
tains categorical variables that assign one (qualitative) value of a fixed set
of possible values to each policy [24]. In particular, the actions taken by a
policy are encoded as categorical variables (e.g., with the qualitative value
“moveTo(L7)”). The categorical dataframe also contains quantitative vari-
ables, e.g., for the policies’ utility function weights and costs.

Definition 4.2 (Categorical dataframe). For an output tuple λ = (σ, uσ, u
g
σ)

generated by the planner from the policy exploration profile τ = (M,W,CΦ, U,Π),
a row for a categorical dataframe consists of the concatenation of the elements
of the tuple (xW , xC , uσ, xE, xP), where:

4A dataframe is a two-dimensional data structure capturing samples (in rows) with
their characteristics (in columns of potentially different types).

19

• xW ∈ τ.W is the set of weights from which λ was generated.

• xC ∈ Rn
≥0 is the set of quantified costs of σ along the different quality

dimensions.

• xE = e(σ) is the policy encoding of σ.

• xP ∈ τ.Π is the set of parameter values from which λ was generated.

A categorical dataframe consists of the aggregation of all the rows resulting
from encoding the tuples contained in policy exploration profile τ .

For the categorical dataframe (cat. in Figure 3), actions indicate the lo-
cation that the robot should move to or the speed that should be set.

In addition to categorical dataframes, we have numerical dataframes for
PCA, which are obtained in a similar way, but with additional constraints
that impose numerical types for all the values contained in the rows. Numer-
ical dataframes do not contain any categorical variables, but convert them
into continuous or discrete numerical values. The policy actions are trans-
formed into real values (e.g., indicating the traveled distance), as we describe
below.

Definition 4.3 (Numerical dataframe). For an output tuple λ = (σ, uσ, u
g
σ)

generated by the planner from the policy exploration profile τ = (M,W,CΦ, U,Π),
a row for a numerical dataframe consists of the concatenation of the ele-
ments of the tuple (xW , xC , uσ, xE, xP), where xW , xC and uσ are defined in
the same way as for the categorical dataframe, with the additional constraint
that all parameters in xP belong to numerical types, and the elements in xE
are transformed via a function feσ : S×A→ S×R that maps policy actions
to numerical values.

For the numerical dataframe (num. in Figure 3), actions are translated
into numerical values and represent the distance that the robot should travel
in this state (and 0 if it does not visit the location), i.e., feσ(s, a) = (s, d(s, s′)),
where d(s, s′) is the distance between states (locations). Apart from the pol-
icy encoding in state-action pairs, variables are used to describe the number
of steps nsteps in the policy (i.e., the number of actions that are taken from
the start to the goal location), the number of movements nmoveTo, and the
number of steps in which the speed is decreased or increased (ndecSpeed and
nincSpeed).

20

The tables at the bottom of Figure 3 show environmental parameters (in
xP , cf. definitions 4.2 and 4.3) that in this case represent characteristics of
the map, i.e., the privacy levels of the locations Li and the occlusion levels
of all edges (Lj, Lk). These variables are represented as categorical variables
in the dataframe for MCA (e.g., PUBLIC, PRIVATE, CLEAR, ...) and as
numerical variables in the dataframe for PCA. With the numerical variables,
we indicate whether a node is public (0), semi-private (1), or private (2),
and whether a path between two nodes is clear (0), partially occluded (1), or
occluded (2). Moreover, characteristics of the map are captured in order to
analyze how variations in the map result in different generated policies. These
variables are aggregated with the policy data to form a single dataframe for
analysis. While the examples shown in this paper do not incorporate any
map variations, it is useful to consider environmental variables due to their
substantial influence on the adaptation behavior generated by an automated
planner.

In our dataframes, to focus the subsequent analysis on differentiating vari-
ables, variables that have the same value for all rows are removed. Moreover,
as part of PCA, the data is scaled to have unit variance before the analysis
takes place.

When applying the approach to real-world systems, human input is needed
to select which variables are relevant in the particular context and how they
should be represented and extracted. For example, methods can be added
to existing planning programs that extract the required data as csv files.
Human input is also required to select which variables should be considered
when creating decision trees. Details about the filtering step before DTL will
be provided in Section 5.4.

5. Analyzing Quality Tradeoffs using Machine Learning Techniques

This section describes how machine learning methods are applied as part
of the approach: PCA, MCA, k-means clustering, and decision tree learning.

To illustrate the techniques, we use a robot mission planning example that
is based on the system introduced in Section 2. The extended version relies
on a map containing 69 nodes (39 public, 14 semi-private, and 16 private) and
194 edges (15 of which are partially occluded and 16 occluded). The privacy
and occlusion properties were randomly assigned to nodes and edges. This
random assignment of properties can contribute to the results of the quality

21

w_collision

w_travelTimew_intrusiveness

L26_dist

L22_dist

L11_dist

L17_dist

L8_dist

LX5_dist

L18_dist

L13_dist

L25_dist

L21_dist

L55_dist

L51_dist

L12_dist

LX3_dist

LX2_dist

L16_dist

SumTravelTime

SumCollisions

SumIntrusiveness

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

PC1 44.4 %

P
C

2

3
0

.2
7

 %

Figure 4: PCA correlation loading plot for our robot mission planning scenario

tradeoff analysis—if the most commonly selected paths happen to be public,
privacy might be less significant for the tradeoff among quality attributes.

5.1. Principal Component Analysis (PCA)

We apply PCA to visualize correlations between variables (e.g., utility
function weights) and contributions of variables to the differences in policies.
Figure 4 shows a PCA correlation loading plot for our robot mission planning
example. Table 3 indicates the variables used in the plot with their meanings.

The plot indicates which variables are most relevant to explain the vari-
ance in the data set and their relations to the first two principal components.
The first principal component (PC1) accounts for 44.4% and the second
(PC2) for around 30% of the explained variance in the data. The plot con-
tains two ellipses indicating how much variance is taken into account, with the
outer ellipse being the unit circle and accounting for 100% explained variance
and the inner ellipse indicating 50% explained variance. Variables between
the edges of the two ellipses are the most distinguishing variables and the
closer to the unit circle, the more important a variable is. It can be seen that
the utility function weights contribute to different extents: w intrusiveness

is of high relevance for PC1 and is negatively correlated with w travelTime

and w collision. Overall, w intrusiveness has the greatest impact on the

22

Table 3: Variables shown in the PCA correlation loading plot (Figure 4).

Variable Meaning

L8 dist distance traveled starting from location L8
SumCollisions sum of expected collisions (with occluded segments

counting 2 and semi-occluded segments counting 1)
SumIntrusiveness sum of intrusive incidents (with visited private locations

counting 2 and semi-private locations counting 1)
SumTravelTime sum of travel time
w intrusiveness the importance of not missing a target (between 0 and 1)
w travelTime the importance of not being destroyed (between 0 and 1)
w collision the importance of not being destroyed (between 0 and 1)

variance in the data, being located between the unit circle and the circle ex-
plaining 50% of the variance. It is followed by w travelTime as the second
most differentiating utility function weight. The weight of collision is of less
importance, since it mainly impacts PC2.

Besides analyzing the contributions of variables using the plot, it is also
possible to see the relationships between them. The angle between the vec-
tors going from the origin of coordinates to two variable points indicates how
closely these variables are correlated. Figure 4 indicates a positive corre-
lation between w intrusiveness, SumCollisions, and SumTravelTime (all
of which are negatively correlated with SumIntrusiveness). This observa-
tion indicates that if intrusiveness is an important attribute, the sums of
collisions and travel time will be high and the sum of traversed intrusive
locations will be low. Moreover, variables whose points are on opposite sides
of the plot and form an angle larger than 90 degrees (e.g., there is an angle
close to 180 degrees between the vectors going from the origin of coordinates
to the variable points) are negatively correlated, e.g., w travelTime and
SumTravelTime. Finally, it can be seen that w collision is positively cor-
related with SumIntrusiveness (which are both negatively correlated with
SumCollisions), indicating that collisions are often avoided by accepting
a high sum of traversed intrusive locations. These observations are in line
with what one would expect of this robot mission planning example: poli-
cies either optimize for intrusiveness avoidance (at the expense of travel time
and collision avoidance), travel time (at the expense of collision avoidance) or
collision avoidance (at the expense of intrusiveness). Analyzing these correla-
tions facilitates the understanding of tradeoffs in the quality space. Another

23

Figure 5: MCA biplot for our robot mission planning scenario. Samples are plotted as
blue points and categorical variables are shown as red triangles.

Table 4: Variables shown in the MCA biplot (Figure 5).

Variable Meaning

LX3 decision indicating that LX3 is not visited
LX3 moveTo(L18) decision indicating that the action in LX3 is to move to L18

conclusion illustrated by the plot is that all utility function weights are neg-
atively correlated with each other. Hence, stakeholders need to decide which
quality attribute(s) to prioritize, which will entail differences in the cost of
the observed policies (expressed in the sums of travel time, collisions, and
traversed intrusive locations).

5.2. Multiple Correspondence Analysis (MCA)

MCA is similar to PCA in the sense that it helps to reduce the dimension-
ality of a dataframe and indicates correlations between variables. The output
of MCA is often shown as a two-dimensional biplot in which individual sam-
ples and variables are shown along the first and second principal axes. For the
robot mission example, an MCA biplot is shown in Figure 5. The variables
with their meanings are clarified in Table 4. The locations of the samples are
plotted as blue points and categorical variables are indicated as red triangles.

24

The variables are plotted with respect to the two principal dimensions. The
two first dimensions account for 46% and 31.8% of the explained variance.
The squared correlations between variables and the dimensions are used as
coordinates. Variables that are close to each other are correlated with each
other, for instance, L12 moveTo(LX3) and LX3 moveTo(L18). It can be seen
that several groups of categorical variables (red triangles) are strongly corre-
lated with each other and with the depicted samples (blue points indicating
policies). Variables that are close to 1 and -1 on an axis contribute strongly
to that dimension. For instance, the cluster of categorical variables in the
bottom left of the plot indicates that actions to move the robot from L11 via
L12 and LX3 to L18 are commonly taken together and are correlated with a
group of policies. Joint dimensionality reduction and clustering allow users
to explore this observation further.

Already at first glance, the MCA biplot indicates that there might ex-
ist different groups of samples and variables (which can be considered as
corresponding to different classes of policies). Our approach supports fur-
ther investigation of these groups of policies with the joint dimensionality
reduction and clustering method described below.

5.3. Clustering Algorithms

To select an appropriate k for the number of clusters, we calculated the
average silhouette width index for different cluster sizes. The average silhou-
ette width index was highest for k = 4 and 3 dimensions, indicating that for
these values, the clusters are most compact and well-separated. In this exam-
ple, the average silhouette width index was 0.9604. Average silhouette width
index values are between -1 and +1, with values close to 1 indicating the
clusters are well-separated. A value of 0.9604 indicates that different clusters
are well-distinguished from each other [29]. Therefore, we chose k = 4 and
n = 3 for our subsequent analysis.

Besides calculating the average silhouette width index, we also calculated
macro-averaged precision, recall, and F1 scores. The precision was 0.916,
the recall 0.850, and the F1 score 0.873. These values indicate that the
automatically calculated clusters correspond well to the clustering based on
manual labeling.

In Figure 6, a reduced k-means biplot for the robot mission planning ex-
ample is shown, in which policies are indicated as points and quantitative
variables (e.g., utility function weights and policy costs) are shown as axes.
As a first step, we combined PCA with k-means for clustering [12]. Policies

25

CAC

IAC

FC

BC

w_collision

w_travelTime

w_intrusiveness

L26_dist

L11_dist

L17_dist

L8_dist

SumTravelTime

SumCollisions

SumIntrusiveness

Dim. 1

D
im

.
2

Figure 6: A reduced k-means biplot of policies (points) and quantitative variables (axes
with respect to Dimensions 1 and 2). The clusters are indicated as CAC, IAC, FC, and
BC.

are grouped into four clusters that are correlated with quantitative vari-
ables to different degrees. The clusters are labeled as FC (fast cluster), BC
(balanced cluster), CAC (collision-avoidant cluster), and IAC (intrusiveness-
avoidant cluster). Note that these labels were manually created and are not
automatically assigned to the clusters. As in the PCA correlation loading
plot, the angle between the vectors going from the origin of coordinates to two
points indicates how closely these variables or samples are correlated. The
closer the point representing a policy is to the label of an axis, the stronger
is the correlation. The data suggests that there is a substantial difference
between the clusters: CAC (the collision-avoidant cluster) is correlated with
a high weight of collision, whereas IAC (the intrusiveness-avoidant cluster) is
correlated with a high weight of intrusiveness. FC (the fast cluster) is mainly
correlated with a high weight of travel time and BC (the balanced cluster) is
correlated (to a lesser degree) with w travelTime and w collision. More-
over, CAC is associated with a high sum of traversed intrusive locations, IAC
with a high sum of collisions, and FC and BC with a short travel time. It
should also be noted that L8 dist, L11 dist, L17 dist, and L26 dist are

26

policy variables shown in the plot, which indicates that the decisions at those
locations are the most important to characterize differences between clusters.
Going back to Figure 5, we can see that the decisions taken at these locations
are indeed distinguishing characteristics of different groups of policies. For
large-scale examples such as this one, it is often not obvious for humans to
see what decisions differentiate clusters of policies, which is why these plots
are useful.

Figure 7 depicts how the clusters can be further characterized. The cluster
means for the quantitative variables in all clusters are shown. Similarly to our
previous observations, the figure indicates that CAC (the collision-avoidant
cluster) is correlated with a high weight of collision, a high sum of traversed
intrusive locations, and a low sum of collisions. IAC (the intrusiveness-
avoidant cluster) is correlated with a high weight of intrusiveness, a high
sum of collisions, and a low sum of intrusive traversed locations. FC (the fast
cluster) is correlated with a high weight of travel time, low sums of collisions
and travel time, and a high number of traversed intrusive locations. Finally,
BC (the balanced cluster) deviates less from the mean of 0 of the standardized
values across all clusters. BC has a slightly increased mean weight of travel
time, which reflects in low sums of travel time and intrusiveness and a slightly
higher sum of collisions.

Apart from the coordinate plots, it is also worth examining how the clus-
ters can be characterized in terms of categorical variables, which is something
that can be done by applying MCA in combination with k-means cluster-
ing [12]. Figure 8 shows the values of categorical variables that have the
highest standardized residuals (both positive and negative ones) for each
cluster. Standardized residuals represent how much the values of a categor-
ical variable among the samples in a cluster differ from the values of that
variable across all samples, taking into account their standard deviation.
Variables with a high absolute standardized residual are the ones that have
an above/below average frequency in a cluster. In this example, the values
encode state-action pairs, indicating the location at the current state, fol-
lowed by the action that should be taken (or an empty value if the policy
does not enter the state). For instance, L11.moveTo(L12) in Figure 8 indi-
cates that for CAC, an unusually frequent decision at location L11 is to move
to L12, which has a high standardized residual. Policies in FCAC frequently
include variables indicating that the robot shall move from L11 to L12, from
L12 to LX3, and from LX3 to L18. For IAC, it can be seen that policies in
that cluster commonly move from L11 to L13 and from L13 to L17 (given

27

-1.0

-0.5

0.0

0.5

1.0

CAC (34.9%) IAC (34.4%) FC (17.7%) BC (13%)

Clusters

m
e

a
n

Variables w_collision
w_travelTime

w_intrusiveness
SumTravelTime

SumIntrusiveness
SumCollisions

Figure 7: Bar plot of the cluster means for our robot mission planning scenario

that those values have high standardized residuals). Policies in FC and BC
frequently avoid visiting L11 at all. In the particular map taken for this
example, L11 and L12 are private nodes, whereas L13 is a public node. This
observation indicates why policies in the intrusiveness-avoidant cluster IAC
tend to move to a public, non-intrusive location (i.e., L13) in this state.

Based on the analysis of standardized residuals, it is possible to elicit
which decisions (in terms of state-action pairs) differentiate clusters. In order
to analyze how changes in the utility function would lead to different policies
being generated, we focus especially on these differentiating decisions when
applying decision-tree learning.

5.4. Decision Tree Learning

We applied decision tree learning to dive into the details and explain how,
for example, a different selection of utility function weights would impact the
generated policies.

Before applying decision tree learning as part of our approach, a filtering
step needs to be performed in which relevant variables are identified. Deci-
sion tree learning requires as an input a dependent variable Y whose value
should be predicted based on a number of independent variables X. In case a

28

Figure 8: Variables with the highest standardized residuals (positive or negative) for each
cluster in the robot mission planning scenario

29

Figure 9: Decision tree plot for the robot mission planning example (showing the selected
decision in the state L11)

classification tree is grown, Y is a categorical variable, whereas for regression
trees, Y is quantitative. In our approach, various combinations of variables
are of interest, for instance:

1. predicting what action is taken in a state s, depending on the utility
weights w, i.e., Y = σ(s) and X = w (a classification tree);

2. predicting what action is taken in state sj, depending on the actions
that were taken in previous states, i.e., Y = σ(sj) and
X = {σ(s1), ..., σ(sj−1)} (a classification tree);

3. predicting the utility obtained in the quality attribute dimension i, de-
pending on the selected policy σ, i.e., Y = uσi and X = σ (a regression
tree);

4. predicting the cost in a quality attribute dimension i, depending on the
selected policy σ, i.e., Y = Φσi and X = σ (a regression tree).

When predicting what action is taken in a state, we suggest focusing on
variables that have high absolute standardized residuals in several clusters.
L11 in our robot mission planning example is such a state in which the
selected actions differ strongly in different clusters and depending on the
chosen utility function weights.

Figure 9 shows an example of a decision tree plot for the robot mission
example. It depicts a classification tree that indicates what actions shall be
taken when the robot is at location L11. It indicates what utility function
weights the decision depends on. Decision trees can be read in a top-down

30

manner. Generally, for low collision and high intrusiveness weights, the de-
cision is to move to L13, whereas for low intrusiveness weights and high
weights of travel time, the decision is to avoid L11. Moving to L12 is the
decision taken for in-between values, e.g., for a weight of 0.3 for intrusive-
ness, a weight of 0.3 for collision avoidance, and a weight of 0.4 for travel
time. The decision tree plot can support stakeholders in further analysis of
the spectrum of utility function weights and their impact on selected policy
actions. It should be noted that the condition at the root of the tree is con-
nected to the most differentiating variable in the dataframe. In the example
above, it is the weight of intrusiveness. While this observation confirms our
findings from PCA, it is not sufficient to solely rely on decision tree learning
for quality tradeoff explanations, as tradeoffs are not as evident in decision
trees.

5.5. Summary

To summarize, with PCA [9] and MCA [10], our approach helps to reduce
the dimensionality of our data and identify the differentiating variables. As
a next step, the combination of dimensionality reduction techniques with
clustering [11, 12] is used to identify strategies (categories of policies with
similar characteristics). To analyze the details of these strategies and identify
thresholds of variable values, decision tree learning [13] is employed.

6. Evaluation

In the following, we present our evaluation method (Section 6.1), the
results of our evaluation (Section 6.2), and threats to validity (Section 6.3).

6.1. Evaluation Method

We evaluated our approach with respect to the feasibility of applying it to
other automated planning problems, as well as with respect to the tradeoff
between the information reduction and the amount of explained variance
retained by the results obtained with our approach. Concretely, our research
questions are:

1. RQ1: To what extent is the approach applicable to automated plan-
ning problems? (Feasibility)

31

2. RQ2: How much can the complexity of the information presented to
a human stakeholder be reduced while preserving most of the relevant
information? (Information reduction vs. amount of explained variance,
only relevant to PCA and MCA)

The evaluation focuses on the approach’s feasibility (RQ1) to investigate
how applicable machine learning-based techniques are to elicit and explain
tradeoffs. With feasibility, we refer to the extent to which it is possible to gen-
erate explanations for automated planning systems and draw tradeoff-related
conclusions from them. Analyzing the information reduction-explained vari-
ance ratio (RQ2) gives indications about the potential of our approach to
reduce the complexity of large problem spaces while retaining important in-
formation. Note that the focus does not lie on the usability of our approach,
but on the applicability and potential of applying machine learning tech-
niques to explain tradeoffs. In the future, the answers to these research
questions can form a basis to develop more focused and usable explainability
techniques (see Section 9).

We used two systems for evaluation: an extended version of the robot
mission planning example (see Section 5) and DARTSim, concerned with a
fleet of drones that perform a mission (Section 6.2.1). For both systems, we
generated plans based on a fixed planning problem and a set of utility func-
tions (using uniform distributions over the space of utility function weights)
with the probabilistic model checker PRISM [20].

6.2. Evaluation Results

This section presents the evaluation results. Table 5 shows an overview
of the dataframe dimensions we considered for the experimental evaluation
described in this paper. The dimensions relate to the number of quality at-
tributes, cost dimensions, the number of states, the number of action types,
and the number of samples we collected using PRISM. The number of states
is connected to the number of locations on the map (for robot mission plan-
ning) and with the number of combinations of segments, altitude, and con-
figurations that the fleet of drones can be in (for DARTSim). The action
types represent the actions to move to another location or adjust the speed
to fast or slow (for robot mission planning) and to adjust the altitude, move,
or changing the configuration (for DARTSim). In the following, we describe
how the approach was applied to the DARTSim systems to assess its feasi-
bility (RQ1, Section 6.2.1). We then describe the evaluation results of the

32

Table 5: Dataframe dimensions for experimental evaluation.

System QAs Costs # States Action Types # Samples

Robot Mission Planning 3 3 69 196 215
DART 2 2 80 10 200

information reduction vs. amount of explained variance tradeoff (RQ2, Sec-
tion 6.2.2).

6.2.1. DARTSim System (RQ1)

The second example system used for evaluation was DARTSim, which
is an exemplar that originated from the DART (Distributed Adaptive Real-
Time) project [30]. The system is concerned with a fleet of drones that
attempts to detect targets while avoiding being hit by a threat. We used
a version of DARTSim in which electronic countermeasures (ECM) can be
switched on or off and the fleet of drones can switch between loose and tight
formations. Using ECM and flying in tight formations reduce the probability
of being destroyed, but also decrease the probability of detecting a target.
Moreover, the drones fly through five segments before arriving at their goal
location and their altitude levels range from 1 to 4. The initial position is in
segment 1 in a loose formation with ECM switched off and at an altitude of
1. The relevant quality attributes are safety (measured by the probability of
being destroyed) and the success of the mission (measured by the probability
of missing a target). Possible actions in each state are to fly to the next
segment, increase/decrease the altitude by 1 or 2, wait, change the formation
to loose or tight, and switch ECM on or off. To capture the policy actions
in the numerical dataframe used for PCA, we converted the actions into
numerical values capturing the change in altitude in a [−2,+2] interval.

In Figure 10, the PCA correlation loading plot for DARTSim is depicted,
where PC1 accounts for 45.57% and PC2 for 19.73% of the explained vari-
ance. Table 6 shows an overview of the variables and their meaning. It
can be seen that there exist two negatively correlated clusters of quantita-
tive variables: on the left side of the plot, w destrProbability is located,
along with the sum of missed targets, the altitude increase at segments 1
and 2 (in tight formations with ECM switched on), and the number of steps
in which the altitude is increased and decreased. On the right side of the
plot, w missTarget is located, which is correlated with the cost of getting

33

w_missTarget

w_destrProbability

missedTargets
costDestroyed

NumberSteps

NumberFlyNumberIncAlt

NumberDecAlt

seg.2.form.tight.ecm.true.destr.false.alt.3

seg.3.form.tight.ecm.true.destr.false.alt.4

seg.1.form.tight.ecm.true.destr.false.alt.1

seg.1.form.loose.ecm.false.destr.false.alt.1

seg.4.form.tight.ecm.true.destr.false.alt.3

seg.5.form.tight.ecm.true.destr.false.alt.2

seg.4.form.loose.ecm.false.destr.false.alt.2

seg.3.form.loose.ecm.false.destr.false.alt.4

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

PC1 45.57 %

P
C

2

1
9

.7
3

 %

Figure 10: PCA correlation loading plot for DARTSim (all variables)

Table 6: Variables shown in the PCA correlation loading plot (Figure 10).

Variable Meaning

costDestroyed cost of the drone fleet being destroyed
missedTargets number of missed targets
NumberDecAlt number of steps in which the fleet decreases its altitude
NumberFly number of steps in which the fleet flies
NumberIncAlt number of steps in which the fleet increases its altitude
NumberSteps number of steps in total in the current mission
seg.1.form.tight.ecm.true.

destr.false.alt.1
change of altitude (between -2 and 2) when the fleet is in
segment 1 at altitude 1, in a tight formation, with ECM
switched on, and not destroyed

w missTarget the importance of not missing a target (between 0 and 1)
w destrProbability the importance of not being destroyed (between 0 and 1)

34

seg.2.form.tight.ecm.true.destr.false.alt.3_decAlt(1)

seg.2.form.tight.ecm.true.destr.false.alt.3_decAlt(2)

seg.2.form.tight.ecm.true.destr.false.alt.3_fly()

seg.2.form.tight.ecm.true.destr.false.alt.3_incAlt(1)−2

−1

0

1

2

0 1 2
Dim1 (36.2%)

D
im

2
(1

9.
9%

)

MCA − Biplot

Figure 11: MCA biplot for DARTSim. Samples are plotted as blue points and categorical
variables are shown as red triangles.

destroyed, the number of steps in which the drones fly, and altitude changes
at segments 1, 3, and 4 (in loose formations with ECM switched off). We can
see that the two utility function weights are negatively correlated with each
other. The observations reflect what can be expected of this system: it either
optimizes policies in order to avoid being destroyed (and therefore, it uses
tight formations and ECM) or it optimizes for target detection, uses loose for-
mations and no ECM, and gets destroyed more often. Among the categorical
variables depicted here, seg.2.form.tight.ecm.true.destr.false.alt.3
is the most relevant, as it is located close to the unit circle and central to
explain PC1. We observed that the relevant categorical variables are of-
ten associated with the differentiating decisions in the policies and are good
candidates to explore as one of the input variables for decision tree learning.

Figure 11 shows an MCA plot of selected categorical variables and poli-
cies. The variables with their meanings are clarified in Table 7. Given
that there exist many categorical variables in this example and plotting
them would lead to overlapping labels, we filtered the data by the vari-
able previously identified as relevant (i.e., those that have the initial state
seg.2.form.tight.ecm.true.destr.false.alt.3). Hence, the plot de-

35

Table 7: Variables shown in the MCA biplot (Figure 11).

Variable Meaning

seg.2.form.tight.ecm.true.
destr.false.alt.3 fly()

decision indicating that in segment 2 with altitude 3,
tight formation, ECM activated, and no destruction, the
drone fleet should continue flying at the same altitude

seg.2.form.tight.ecm.true.
destr.false.alt.3 decAlt(2)

decision indicating that in segment 2 with altitude 3,
tight formation, ECM activated, and no destruction, the
drone fleet should decrease its altitude by 2

picts the categorical variable values for actions selected in segment 2 when
the fleet is in a tight formation with ECM switched on. It can be seen that
three main groups of policies exist that are correlated with the drones (i)
decreasing their altitude by 2, (ii) decreasing their altitude by 1 or flying to
the next segment, or (iii) increasing their altitude by 1.

When it comes to clustering, in this example the optimal cluster size
differs when calculating it based on the MCA dataframe or based on the
PCA dataframe. The resulting clusters are either five clusters of sizes 25.5%,
23.5%, 18%, 17%, and 16% (using the PCA dataframe) or three clusters
of size 81.5%, 9.5%, and 9% (using the MCA dataframe). Given that the
MCA dataframe reflects the main characteristics of policies more explicitly
than the PCA dataframe (where we abstract from actions being taken by
representing them using numerical values, i.e., altitude changes in the case
of DARTSim), we decided to use k = 3 for our analysis.

A reduced k-means biplot for DARTSim, indicating three clusters of poli-
cies along with quantitative variables, is depicted in Figure 12. The closer the
point representing a policy is to the label of an axis of a quantitative variable,
the stronger is the correlation. The data suggests that there is a substantial
difference between the clusters: RTC (the risk-taker cluster) is correlated
with a high weight of not missing a target, whereas DAC (the destruction-
avoidant cluster) is correlated with a high weight of avoiding destruction.
EDAC (the extremely destruction-avoidant cluster) is correlated with a high
weight of avoiding destruction and tends to change its altitude more fre-
quently (resulting in a correlation with NumberDecAlt and NumberIncAlt).
Moreover, it can be seen that RTC is correlated with a high cost of being
destroyed, whereas DAC and EDAC are correlated with a high number of
missed targets. These observations confirm our previous findings regarding
the tradeoff between detecting more targets vs. not being destroyed.

36

RTC
DAC

EDAC

w_missTarget

w_destrProbability

missedTargets

costDestroyedNumberSteps

NumberFly

NumberIncAltNumberDecAlt

seg.2.form.tight.ecm.true.destr.false.alt.3

Dim. 1

D
im

.
2

Figure 12: A reduced k-means biplot of policies (points) and quantitative variables (axes
with respect to Dimensions 1 and 2) of DARTSim. The clusters are indicated as RTC,
DAC, and EDAC.

-2

0

2

RTC (81.5%) DAC (9.5%) EDAC (9%)

Clusters

m
e

a
n

Variables w_missTarget
w_destrProbability

missedTargets
costDestroyed

NumberSteps
NumberFly

NumberIncAlt
NumberDecAlt

Figure 13: Bar plot of the cluster means for DARTSim

37

Figure 14: Variables with the highest standardized residuals (positive or negative) for each
cluster in DARTSim

Figure 13 gives further insights regarding the clusters’ characteristics:
RTC (the risk-taker cluster) has a slightly increased weight of not missing a
target, a high cost of destruction, a low weight of avoiding being destroyed,
and a low number of missed targets. DAC (the destruction-avoidant), on the
other hand, has a high weight of avoiding being destroyed and a low weight
of not missing a target, resulting in a high number of missed targets and a
low cost of destruction. EDAC (the extremely destruction-avoidant cluster)
has similar weights as DAC, however, its weight of avoiding being destroyed
is even higher and the weight of not missing a target is even lower. The
extreme preference is reflected in the low cost of being destroyed, the high
number of missed targets, and the increased numbers of steps in which the
altitude is increased or decreased.

The macro-averaged metrics were 0.993 for precision, 0.833 for recall and
0.885 for the F1 score. These values indicate that the clustering based on joint
dimensionality reduction and k-means correspond to the clustering based on
manual labeling. The average silhouette width value was 0.875. It indicates
that the clusters were rather well-separated and that objects in the same
cluster are closer to each other than to objects in other clusters [29].

These differences in quantitative variable values are also connected to

38

w_destrProbability < 0.82

w_destrProbability < 0.91

w_destrProbability < 0.82

decAlt(2)
.01 .82 .09 .09

100%

decAlt(2)
.00 1.00 .00 .00

82%

fly()
.03 .00 .49 .49

18%

fly()
.05 .00 .95 .00

10%

decAlt(1)
1.00 .00 .00 .00

0%

fly()
.00 .00 1.00 .00

9%

incAlt(1)
.00 .00 .00 1.00

9%

yes no

decAlt(1)
decAlt(2)
fly()
incAlt(1)

Figure 15: Decision tree plot for DARTSim (showing the selected decision in the state
seg.2.form.tight.ecm.true.destr.false.alt.3)

differences in policies and actions being taken. Figure 14 shows the top ten
categorical variables with the highest standardized residuals for the three
clusters. Policies in RTC (the risk-taker cluster) have negative standardized
residuals for multiple variables with empty values (which indicate that the
fleet does not visit states in which the fleet is at an altitude of 1 with ECM
switched on). Note that the standardized residuals are negative, which im-
plies that it is common for policies in this cluster to fly at a low altitude and
switch ECM off. This observation is consistent with RTC being the risk-taker
cluster, because it is riskier to fly at a low altitude with ECM switched off,
but it also leads to a higher number of detected targets. Policies in DAC (the
destruction-avoidant cluster) tend to fly at an altitude of 3, switch on ECM,
and change their form to a loose formation and lower their altitude to 2 in
segment 3. This strategy increases the probability of avoiding destruction.
Policies in EDAC (the extremely destruction-avoidant) tend to increase and
decrease the fleet’s altitude a lot and frequently fly at an altitude of 4. This
strategy leads to a higher probability of missing a target, but also lowers
the probability of being destroyed. One observation when looking at these
different strategies is that the decision taken in segment 2 shapes the way for
the subsequent steps of the mission: policies in RTC tend to avoid flying in
a tight formation with ECM switched on at an altitude of 3, whereas policies
in DAC tend to do exactly that, and policies in EDAC tend to be in that
state and increase the altitude further.

39

The previous observation can be further explored using a decision tree
depicted in Figure 15. It can be seen what actions are taken in the segment
2 depending on the selected utility function weights. In this case, the de-
cisions depend on w destrProbability. In the experiment we conducted,
all policies visit the state where the fleet is in segment 2 in a tight forma-
tion with ECM switched on and at an altitude of 3. For policies with a low
weight of avoiding destruction (w destrProbability < 0.82), the decision in
this step is to decrease their altitude by 2 (and thus increase the probability
of not missing a target). This action is common for policies in RTC (the
risk-taker cluster). For policies with a high weight of avoiding destruction
(w destrProbability ≥ 0.91), the decision is to increase the altitude by 1,
which makes it even more unlikely to be hit by a threat. Policies in EDAC
tend to adopt this behavior. Policies with a weight of avoiding destruction
in the interval [0.82, 0.91) fly to the next segment and keep their altitude.
From our previous observations, we can see that this decision is common for
policies in DAC.

What can be concluded from the findings described in this section is that
the tradeoff explanation approach is applicable to DARTSim. The main
tradeoff lies in accepting the risk of potential destruction vs. accepting po-
tentially missed targets. Based on the clustering analysis, we identified that
the policies could be categorized as either being part of the risk-taker clus-
ter, the destruction-avoidant cluster, or the extremely destruction-avoidant
cluster (that tends to increase its altitude a lot to ensure that threats are
avoided). Human stakeholders can leverage our analysis methods to arrive
at these conclusions and more significantly identify the thresholds in util-
ity function weights leading to differences in the clusters. In this case, the
relevant utility function weight is the weight of avoiding destruction, with
relevant thresholds between 0.82 and 0.91. In the following subsection, we
describe how the tradeoff explanation approach can be applied to other self-
adaptive systems.

6.2.2. Tradeoff between Information Reduction and Explained Variance (RQ2)

Tables 8 and 9 summarize the amount of reduced information and ex-
plained variance using PCA and MCA for the two systems we used for eval-
uation. The tables indicate the number of variables in the dataframe, as well
as the relevant variables indicated by PCA and MCA. The relevant variables
are those outside the area that indicates 50% of the explained variance in
the data (indicated by a circle in the PCA plots). The column “information

40

Table 8: Information reduction and explained variance summary (numerical dataframe,
with PCA).

System #
data-
frame
vars.

relevant
PCA vars.

information
reduction

explained
variance

residual
variance

Robot Mission Planning 22 20 9.09% 74.67% 25.33%
DART 16 15 6.25% 65.3% 34.7%

Table 9: Information reduction and explained variance summary (categorical dataframe,
with MCA).

System #
data-
frame
vars.

relevant
MCA
vars.

information
reduction

explained
variance

residual
variance

Robot Mission Planning 35 25 28.57% 77.81% 22.19%
DART 80 35 56.25% 56.09% 43.91%

reduction” indicates the extent of information reduction if only the relevant
variables are considered. Explained variance is the sum of the percentages
that the first two principal components/dimensions account for. Residual
variance is the remaining variance that is not explained by the first two
components/dimensions.

From the tables, it can be seen that the reduction in the information that
needs to be processed by human stakeholders is greatest for the categorical
dataframe used for MCA, i.e., 28.57% and 56.25%. In the case of PCA, many
dataframe variables were filtered out before applying PCA because they had
constant or empty values, leading to an information reduction of less than
10%. The tables also indicate that the first dimensions/components explain
a large amount of the variance in the data, with a residual variance ranging
between 22.19% and 43.91%. To decrease the residual variance further, it
can be useful to consider a third principal component or dimension in the
analysis. While 3D PCA plots can be generated, considering more dimen-
sions makes it more difficult to create illustrative plots for analysis. Overall,
the observations regarding information reduction and explained variance in-
dicate that the approach supports considerable information reduction, while
maintaining a large amount of explained variance. The combination of di-

41

mensionality reduction techniques with clustering and decision tree learning
can further facilitate the focused analysis of tradeoffs, planning strategies,
and thresholds and reduce the information that needs to be processed by
human stakeholders.

Note that the information reduction obtained by PCA/MCA is not the
only benefit of our approach. The use of clustering techniques also reduces
the amount of information an expert needs to analyze: instead of having to
deal with all samples, it is sufficient to analyze the characteristics of clus-
ters/policy strategies. DTL is especially useful to get insights into variable
thresholds impacting the generation of plans with many states and actions.
The example applications of robot planning and DARTSim have large state-
action spaces. For web-based systems with few states, however, we expect
the information reduction achieved by decision tree learning to be less sub-
stantial.

6.3. Threats to Validity

In the following, we discuss threats to validity:

Internal validity. This type of validity is concerned with confounding factors
influencing quality tradeoff explanations that we did not consider in this
research. The feasibility of applying our approach could have been influenced
by the concrete sampling strategy (i.e., uniform sampling) that we applied
when collecting data or by specific characteristics of the systems under study.
To be transparent about potentially confounding factors, we described the
systems and method in detail.

Conclusion validity. Although we do not present any statistically significant
conclusions in this paper, we might have missed important findings or pre-
sented findings that do not hold in practice. To account for threats to con-
clusion validity, we present a clear chain of evidence when presenting our
method and findings. For the feasibility of our approach, we describe our
findings in detail and trace them to the generated plots. For the enabled
information reduction, we quantify our findings. We also provide example
dataframes and plots in our Github repository.

Construct validity. The constructs that are relevant in our study are subject
to different interpretations. For example, the construct of feasibility (RQ1)
could be understood in different ways. We refer to the extent to which it is
possible to generate explanations for automated planning systems and draw

42

tradeoff-related conclusions from them. We describe the conclusions we draw
in detail and aim to provide a chain of evidence from the conclusions to the
data in the plots.

Reliability. Reliability is connected to the researchers impacting conclusions
presented in this paper. Given that there is no standard way of interpreting
and describing plots, certain insights might be dependent on our interpreta-
tion and description. We provide a replication package to enable others to
revisit our conclusions and apply our approach to other systems.

External validity. One threat to external validity is that our presented find-
ings might not generalize to other systems and contexts. We selected two
systems to evaluate our findings, with one being concerned with robot mis-
sion planning and the other one with planning for a fleet of drones. For these
systems, our approach was feasible and led to a considerable information re-
duction while preserving relevant information. Other contexts and systems
might come with varying degrees of feasibility and information reduction. In
Section 8, we discuss the expected levels of feasibility for a set of self-adaptive
exemplars.

7. Related Work

Explainability for self-adaptive systems. The need for explainable approaches
for self-adaptive systems has been previously identified [31]. In particular, our
proposed approach can help practitioners assess why an adaptation strategy
is chosen and what the adaptation space can be characterized by. Diallo et
al. [32] presented an explainable framework relying on convolutional neural
networks to reduce the adaptation space. The focus of their approach is
not on discerning and explaining quality attribute tradeoffs, but rather on
adaptation space reduction, which is related to the employed dimensionality
reduction techniques in our approach.

Given that humans should not be overwhelmed with information, an
approach has been designed to identify when to provide explanations to
users [33]. The authors found that explanation can improve a system’s per-
formance, especially for human users with intermediate training levels. The
presented approach is agnostic with respect to the mechanisms employed for
explanation and thus can complement our approach, providing insights about
how it can be exploited in the best possible way in some contexts.

43

Run-time goal-based models have been used as a basis to create natural
language explanations about systems’ run-time behaviors [34]. Another ap-
proach relies on provenance graphs to collect data from a system at run time
and explain it to users [35]. Similarly, historical data can be used to provide
explanations to users, either after the system has finished running or as live
explanations [36]. These approaches can be used to create an explanation
for a particular execution of a system at a point in time. Our approach pro-
vides a high-level explanation of quality tradeoffs in the design space based
on data. To the best of our knowledge, this high-level explanation based on
machine learning techniques has not been covered by previous approaches.

Explainability of tradeoff spaces. In the field of software architecture, an ap-
proach to explaining architectural design tradeoff spaces has been developed
that relies on PCA to support human designers in analyzing tradeoffs (e.g.,
between cost, reliability, and performance) [37]. Our method is based on sim-
ilar ideas, but extends the scope and incorporates other ML-based methods
(i.e., MCA, clustering, and DTL) suitable for tradeoff analysis.

Another related approach is focused on tradeoff-focused contrastive ex-
planation for MDP planning, which involves contrasting a selected policy to
Pareto-optimal alternative planning solutions and arguing about their impact
on quality attributes [14]. A similar approach relies on contrastive explana-
tions for MDP planning, which focuses on describing “critical states” and the
impact of decisions on the flexibility to replan the route at run time [8]. In
contrast to these approaches, our research focuses on quality attributes and
strategies (i.e., clusters of policies sharing similar characteristics) to explain
the tradeoff space at a high level.

Explainable AI. In artificial intelligence, there is a growing body of work
in the emerging area of eXplainable AI (also referred to as XAI and inter-
pretable AI in the literature) that aims at creating techniques that can yield
more understandable models that enable humans to understand, appropri-
ately trust, and effectively manage emerging AI-based systems. However,
the field is constrained to black-box machine learning systems and a recent
extensive survey of the area does not show any XAI approaches that target
automated planning [38]. One approach in the area of XAI supports the ex-
traction of history-aware explanations on demand when using reinforcement
learning, including data on measurements and quality attributes [39]. While
it does not focus on automated planning, it is similar to our approach since
historical data is leveraged to generate explanations.

44

Explaining decisions in reinforcement learning. To explain the decisions taken
in reinforcement learning, an approach has been developed that involves
learning decomposed reward function components for an MDP and using
them to predict the expected rewards in different quality attribute dimen-
sions [40]. This approach learns the optimal policy at the same time as the
explanations (and the reward dimensions that the system tries to maximize).
Our approach is similar in the sense that it helps to discern and explain dif-
ferent strategies with different quality attribute characteristics.

The explanation of actions through hierarchical goals is another direc-
tion in explainable AI. The Dot-to-Dot method [41] uses hierarchical rein-
forcement learning with hindsight experience replay for robotic manipulation
and breaks the mission goal into smaller sub-goals whose rewards shall be
maximized. The high-level representation can be presented to humans and
interpreted more easily, which is in line with our approach that helps to ab-
stract from the state-action pairs in policies and describes them as clusters
of strategies.

While the explanations provided by our method are global explanations
at a high level of abstraction [42], they also allow users to investigate local
decisions using DTL. We are not aware of any quality tradeoff explanation
approaches for self-adaptive systems with these properties.

Defining utility function weights. In the context of automated planning, our
previous work presents a tool-supported negotiation technique for preference
and constraint elicitation, whose input is used to define the weights of a
utility function [43, 7]. While the approach helps stakeholders come to an
agreement about utility function weights, users are unable to determine what
the consequences on system behavior are. This paper addresses this issue
by providing an explainability approach that can help humans identify how
to best select utility function weights and achieve the desired adaptation
behavior.

8. Discussion

Feasibility (RQ1). The results of applying our approach to the robot mission
planning and DARTSim systems indicate that our approach is applicable to
extract information regarding quality tradeoffs, strategies, and defining vari-
able thresholds (e.g., in utility function weights). Our findings are consistent
with our observations when examining models and simulation results of the
systems.

45

Table 10: Exemplars and inputs required to apply our approach

Domain Variables Variables Quality attributes
(exemplars) (environment) (policies)

Web / Cloud /
Service-based
Znn.com [44],
Hogna [45],
TAS [46], Hadoop-
Benchmark [47],
CrowdNav and
RTX [48],
mRUBiS [49],
K8-Scalar [50],
SWIM [51], OCCI
Monitoring [52],
RDMSim [53]

request arrival
rate, service
reliability,
service
availability,
network latency

server/virtual
machine pool size,
content fidelity,
maximum service
invocation retries,
timeout length,
service selection,
allocation of
resources

performance
(response time,
throughput), cost,
resource consumption,
content fidelity,
availability, reliability
(e.g., number of failed
service invocations,
mean time to
recovery)

Autonomous
Vehicles /
Robotics
ATRP [54],
Dragonfly [55],
DARTSim [30],
UNDERSEA [56],
TRAPP [57],
RoboMAX [58]

weather
conditions,
obstacles, speed
limits, traffic
accidents, road
closures,
desired fairness
level for
planning,
sensor
reliability, map

route selection,
speed, sensor
configuration,
planning
frequency

timeliness, energy
consumption, safety,
reliability, robustness,
scalability, usability,
performance,
utilization of
resources

Cyber-physical
Systems / IoT
DEECo [59],
FmFM [60],
DeltaIoT [61],
Intelligent
Ensembles [62],
DingNet [63],
AMELIA [64],
Platooning
LEGOs [65], Body
Sensor Network [66]

traffic load,
communication
interference,
sensor
reliability, map,
resources

network settings
(e.g., transmission
power, spreading
factor),
assignment of
resources, route
selection

reliability, cost,
energy efficiency,
travel speed,
utilization of
resources, security

46

To further evaluate the feasibility of our approach, we systematically went
through the set of exemplars for self-adaptive systems curated by the Soft-
ware Engineering for Adaptive and Self-Managing Systems (SEAMS) com-
munity. The community supports a curated repository of example systems
and problems that can be used as a motivation for research, to showcase
and assess solutions and techniques, and to compare results5. We assessed
what pieces of data would have to be extracted and what additional steps
are required to apply our approach to these systems.

Table 10 gives an overview of our findings. Many of these exemplars ex-
hibit a high degree of commonality, so we consider the categorization on the
exemplar website, namely: web/cloud/service-based systems, autonomous
vehicles/robotics systems, and cyber-physical/IoT systems. For each cate-
gory, we indicate the key environmental variables to consider, the variables
that our approach can collect from each generated policy, and the quality
attributes that are affected by the policies.

Adaptations in the domain of web/cloud/service-based systems are af-
fected by environmental variables such as the number of incoming requests
per time unit, network latency, service failure rates, and services becoming
(un)available (e.g., in TAS). Their adaptation policies are generally con-
cerned with changing the server (e.g., Znn.com, mRUBiS, SWIM) or virtual
machine (e.g., Hogna, K8-Scalar) pool size and the fidelity of the contents
served (e.g., text vs. multimedia mode in Znn.com, percentage of requests
served with additional content in SWIM). Relevant quality attributes in-
clude performance, resource consumption, cost, content fidelity, availability,
and reliability.

Autonomous vehicles and (mobile) robotic systems are affected by en-
vironmental variables that are often related to the physical environment in
which the system is operating (e.g., weather conditions, obstacles, e.g., in
Dragonfly) and certain given characteristics of the planning problem (e.g.,
whether the plans should be optimized for fairness, e.g., in TRAPP). Policies
generally indicate the routes to a target destination (e.g., in ATRP or Robo-
MAX), the sensor configuration and speed (e.g., in UNDERSEA), and the
frequency at which planning shall be performed (e.g., in TRAPP). The qual-
ity attributes to consider are related to the timeliness, energy consumption,
safety aspects (e.g., collision avoidance), reliability, robustness, scalability,

5https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/

47

https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/

usability (e.g., in RoboMAX), performance, and the utilization of resources
(e.g., streets in TRAPP).

Cyber-physical/IoT systems need to consider a variety of environmental
factors, depending on the concrete application context (e.g., traffic load,
communication interference, or sensor reliability, map, or the existence of
resources). Policies are concerned with the assignment of parking spaces
or other resources (e.g., in DEECo or Intelligent Ensembles), adjusting the
network settings (e.g., in DingNet), routes, or the number and timing of lane
changes and speed adjustments in Platooning LEGOs. Quality attributes
range from reliability (e.g., the number of successfully delivered packages
in DeltaIoT), cost, and energy efficiency, to the travel speed, utilization of
resources, and security concerns (e.g., in DingNet).

Several exemplars rely on utility or cost functions for self-adaptation, i.e.,
UNDERSEA, TRAPP, and certain implementations of DARTSim, Robo-
MAX, and DeltaIoT, as well as Znn.com, mRUBis, and SWIM. Other exem-
plars use goal models (e.g., FmFm) or implicit representations of the quality
attributes to optimize for and the constraints to meet. Although our tradeoff
explanation approach primarily focuses on systems that are based on utility
functions, it is also potentially of use to applications that consider multiple
(competing) quality attributes. We consider the approach less useful if only
one quality attribute is optimized by a system. However, the overview of
the exemplars indicates that there exists an inherent set of quality attributes
for all exemplar categories which should be considered by realistic systems.
Systems relying on only one quality attribute appear to be less common and
useful in practice.

When collecting data and running our tradeoff explanation approach,
certain techniques employed in the approach might be more suitable to par-
ticular exemplars. For exemplars whose policies can be characterized by
quantitative values (e.g., for network settings, planning frequency, pool size,
timeout length, and invocation retries), the most informative findings can be
reached when using PCA (instead of MCA) for joint dimensionality reduction
and clustering. In those cases, when creating a decision tree, stakeholders
might be mainly interested in understanding threshold values characterizing
different policies and what they depend on.

For exemplars whose policies are best described using categorical variables
(e.g., routes, allocation of resources, and service selection), it is advisable to
use MCA for dimensionality reduction. Aspects to focus on are decisions that
differentiate one cluster of policies from another (e.g., in route planning).

48

For the exemplar categories of autonomous vehicles/robotics and cyber-
physical systems/IoT, we expect a larger and more heterogeneous set of vari-
ables to be collected than for web/cloud/service-based systems. Environ-
mental variables are less easy to capture for systems that need to take the
physical world into consideration than for web/cloud/service-based applica-
tions. Taking weather conditions as an example, one can imagine a variety of
sensors capturing various aspects that might be relevant (e.g., temperature,
cloudiness, pressure, precipitation, and wind). An important step when ap-
plying our approach is to filter out variables that do not account for a large
amount of the explained variance and reduce the dimensionality of the adap-
tation space.

With these insights in mind, researchers and practitioners in the future
can collect data in a targeted way and apply our tradeoff explanation ap-
proach to other systems. Since we do not expect the approach to be applica-
ble as a one-size-fits-all solution, we described the aspects requiring human
input in this section, including the focus on PCA/MCA, variable selection for
decision tree learning, and the variables to focus on during data collection.
The fact that humans might need to give input to create dataframes and
select variables of interest constitutes a potential limitation of our approach.
It is reasonable to expect stakeholders to be able to provide the necessary
inputs, given that the general problem domain and potentially interesting
quality attributes should be known. Since the first steps of the approach
(PCA and MCA) provide a high-level overview of variables and correlations,
these insights can be leveraged when diving into the details and creating de-
cision trees. However, from our experiences with several planning domains,
we realized that it can be difficult to correctly interpret the results if the
semantics of a variable is unclear. In these situations, it can help to ex-
plore the policy generation and planning problem in further detail to better
understand the generated plots and explanations.

Our assessment of the applicability of our method to the SEAMS exem-
plars identified the variables that need to be extracted, aspects to consider
when tailoring the approach and giving human input, and the use of util-
ity functions. Our findings show that not all exemplars rely on explicit
utility functions, and whether PCA or MCA is most adequate for dimen-
sionality reduction depends on the nature of the exemplar. While not all
exemplars employ utility functions, the systems we focused on in this pa-
per (robot mission planning and DARTSim) and many others that require
multiple quality attributes to be traded off against each other do employ

49

them. The weighted sum approach is one that is commonly applied in re-
lated works [15, 16, 17, 18]. Even for systems not relying on utility functions,
our approach is applicable, as long as there are two or more quality attributes
of interest that can be traded off against each other. Besides the weighted
sum model, the weighted product model is a common approach that also
relies on utility function weights [19]. Generally speaking, for any utility
functions that encode weights or preference orders, our approach is likely to
produce informative results. The primary assumption that we make is that
you can generate a variety of points in the design space to explore the plan-
ning space. Future work can investigate the applicability of our approach to
other kinds of utility functions.

Information Reduction (RQ2). For our example systems, we identified an
information reduction of 29–56% with an explained variance in the range of
56–78%. These findings indicate that there is a substantial level of informa-
tion reduction while a large amount of the explained variance is retained.
Note that the dimensionality reduction techniques PCA and MCA are not
the only component of our method, but are complemented with clustering
algorithms and decision tree learning. Clustering algorithms help to further
improve the insights users can get by describing policies in terms of two to
four categories for these example systems. Decision tree learning supports
understanding, e.g., by indicating how values of utility function weights im-
pact the actions to be chosen.

Discussion of the Approach’s Evaluation and Applicability in Practice. On
a conventional laptop, the data generation took 42.93s for the robot mis-
sion planning example with the dataframe dimensions indicated in Table 5.
Once the data has been generated, executing the script to create plots took
20.23s for the robot mission planning example with a conventional laptop.
For even larger problems or higher values for the optimal number of clus-
ters, the execution time would be even longer. While the approach is not
very time-consuming, we do not envision this approach to be applied contin-
uously at run time. Rather, we intend it to be used to train stakeholders in
understanding tradeoffs and helping them to indicate their preferences ap-
propriately to deliberately set utility function weights. Currently, it is often
obscure what the impact on the planned behavior is when defining utility
functions. Our approach aims to address this issue.

The current evaluation focuses on systems with up to three quality at-
tributes. When scaling the approach to larger systems with more quality

50

attributes, the sampling strategy to collect data would likely need to be
revised. We applied uniform sampling of different combinations of utility
function weights. Depending on the planner, the complexity of the problem,
and the number of quality attributes, the sampling should be performed in a
more coarse-granular way. We recommend starting with coarse-grained sam-
pling and performing complementary sampling around key threshold regions.
Future work will identify appropriate data collection strategies for practical
contexts.

The approach’s advantages are its applicability to large, complex design
spaces and the large reduction of information (RQ2). The approach’s dis-
advantage in its current version is the required level of expertise needed to
interpret and understand the plots. While we found the conclusions to be
understandable with adequate additional explanations, further research is
needed to create visualizations or natural language explanations that can
be used by stakeholders of various backgrounds and disciplines. In the fu-
ture, these approaches can be evaluated with respect to how fast and accu-
rately humans can assess explanations. For example, glitch detector tasks [67]
can be used to investigate humans’ mental models by asking them to find
glitches/mistakes in explanations.

9. Conclusions

In this paper, we have presented an approach to explain quality attribute
tradeoffs in automated planning for self-adaptive systems. Our approach
relies on machine learning methods to describe the relevance of quality at-
tributes for automated planning, their relations, strategies (i.e., groups of
planning policies sharing similar characteristics), as well as key thresholds
in utility function weights and their impact on generated policies. We eval-
uated the approach with respect to feasibility (RQ1) by applying it to two
systems (robot mission planning and DARTSim) and describing the poten-
tial application to 24 exemplar self-adaptive systems. We also described the
considerable level of information reduction when applying our approach and
the moderate reduction in explained variance (RQ2).

We observed a number of limitations of our approach, for instance, with
respect to the use of PCA for joint dimensionality reduction and clustering.
PCA is most applicable when correlations between variables are linear and
would need to be replaced with other techniques when non-linear correlations
are of interest.

51

An area of future work is to explore alternative sampling strategies. The
sampling approach used to generate adaptation policy data might influence
the conclusions that are reached. For the examples described in this paper,
we sampled uniformly over the space of parameters (i.e., the utility weights
wi in the ranges [0, 1]). To be able to better approximate thresholds, e.g., for
decision-tree learning, finer-grained sampling around key threshold regions
could be beneficial. Future work will focus on alternative sampling strategies
based on previous work such as cross-entropy methods [68].

Finally, while the insights that can be obtained from applying our ap-
proach can help human stakeholders and system designers better understand
the otherwise untamable complexity of automated planning, the generated
plots might be difficult to grasp for untrained users. To address this issue, we
plan to develop tools with appropriate user interfaces that can visualize and
explain tradeoffs in automated planning and help stakeholders provide input
to ensure that self-adaptive systems’ plans meet their requirements (e.g., by
selecting appropriate values for utility function weights).

Acknowledgments

This work is supported in part by the Wallenberg AI, Autonomous Sys-
tems and Software Program (WASP) funded by the Knut and Alice Wallen-
berg Foundation, by award N00014172899 from the Office of Naval Research
and by the NSA under Award No. H9823018D000. This work was also par-
tially supported by the Spanish Government (FEDER/Ministerio de Cien-
cia e Innovación – Agencia Estatal de Investigación) under project COSCA
(PGC2018-094905-B-I00). Any views, opinions, findings and conclusions, or
recommendations expressed in this material are those of the authors and do
not necessarily reflect the views of the funding sources.

References

[1] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, P. Steenkiste, Rain-
bow: Architecture-based self-adaptation with reusable infrastructure,
Computer 37 (10) (2004) 46–54.

[2] S. Kounev, F. Brosig, N. Huber, The descartes modeling language, Tech.
rep., Institut für Informatik, Universität Würzburg (2014).

52

[3] B. Lacerda, D. Parker, N. Hawes, Optimal and dynamic planning for
markov decision processes with co-safe LTL specifications, in: Pro-
ceedings of the 2014 IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2014, pp. 1511–1516. doi:10.1109/IROS.2014.

6942756.

[4] S. Garćıa, C. Menghi, P. Pelliccione, MAPmAKER: performing multi-
robot LTL planning under uncertainty, in: Proceedings of the 2019
IEEE/ACM 2nd International Workshop on Robotics Software Engi-
neering (RoSE), IEEE, 2019, pp. 1–4.

[5] J. Cámara, B. Schmerl, D. Garlan, Software architecture and task
plan co-adaptation for mobile service robots, in: Proceedings of the
IEEE/ACM 15th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems (SEAMS), 2020, p. 125–136.
doi:10.1145/3387939.3391591.

[6] P. Jamshidi, J. Cámara, B. Schmerl, C. Käestner, D. Garlan, Machine
learning meets quantitative planning: Enabling self-adaptation in au-
tonomous robots, in: Proceedings of the 2019 IEEE/ACM 14th Inter-
national Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS), 2019, pp. 39–50. doi:10.1109/SEAMS.

2019.00015.

[7] R. Wohlrab, D. Garlan, A negotiation support system for defining util-
ity functions for multi-stakeholder self-adaptive systems, Requirements
Engineering (2021).

[8] S. Chen, K. Boggess, L. Feng, Towards transparent robotic planning
via contrastive explanations, in: Proceedings of the 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
IEEE, 2020, pp. 6593–6598.

[9] I. T. Jolliffe, Principal components in regression analysis, in: Principal
component analysis, Springer, 1986, pp. 129–155.

[10] B. Le Roux, H. Rouanet, Multiple Correspondence Analysis, SAGE
Publications, 2009.

53

https://doi.org/10.1109/IROS.2014.6942756
https://doi.org/10.1109/IROS.2014.6942756
https://doi.org/10.1145/3387939.3391591
https://doi.org/10.1109/SEAMS.2019.00015
https://doi.org/10.1109/SEAMS.2019.00015

[11] M. van de Velden, A. Iodice D’Enza, A. Markos, Distance-based clus-
tering of mixed data, Wiley Interdisciplinary Reviews: Computational
Statistics 11 (3) (2019) e1456.

[12] A. Markos, A. Iodice D’Enza, M. van de Velden, Beyond tandem analy-
sis: Joint dimension reduction and clustering in r, Journal of Statistical
Software 91 (10) (2019).

[13] L. Breiman, J. H. Friedman, R. A. Olshen, C. J. Stone, Classification
and regression trees, Routledge, 2017.

[14] R. Sukkerd, R. Simmons, D. Garlan, Tradeoff-focused contrastive ex-
planation for mdp planning, in: Proceedings of the 29th IEEE Inter-
national Conference on Robot and Human Interactive Communication
(RO-MAN), IEEE, 2020, pp. 1041–1048.

[15] C. Ghezzi, A. Molzam Sharifloo, Dealing with Non-Functional Re-
quirements for Adaptive Systems via Dynamic Software Product-Lines,
Springer Berlin Heidelberg, 2013, Ch. 8, pp. 191–213.

[16] S.-W. Cheng, D. Garlan, B. Schmerl, Architecture-based self-adaptation
in the presence of multiple objectives, in: Proceedings of the 2006 In-
ternational Workshop on Self-Adaptation and Self-Managing Systems
(SEAMS), 2006, pp. 2–8.

[17] N. Esfahani, A. Elkhodary, S. Malek, A learning-based framework for
engineering feature-oriented self-adaptive software systems, IEEE Trans-
actions on Software Engineering 39 (11) (2013) 1467–1493.

[18] J. P. Sousa, R. K. Balan, V. Poladian, D. Garlan, M. Satyanarayanan,
User guidance of resource-adaptive systems, in: Proceedings of the 3rd
International Conference on Software and Data Technologies (ICSOFT),
2008, pp. 36–44.

[19] E. Triantaphyllou, Multi-Criteria Decision Making Methods, Springer
US, Boston, MA, 2000, Ch. 2, pp. 5–21.

[20] M. Kwiatkowska, G. Norman, D. Parker, PRISM 4.0: Verification
of probabilistic real-time systems, in: G. Gopalakrishnan, S. Qadeer
(Eds.), Proceedings of the 23rd International Conference on Computer

54

Aided Verification (CAV’11), Vol. 6806 of LNCS, Springer, 2011, pp.
585–591.

[21] C. Dehnert, S. Junges, J.-P. Katoen, M. Volk, A storm is coming: A
modern probabilistic model checker, in: Proceedings of the International
Conference on Computer Aided Verification, Springer, 2017, pp. 592–
600.

[22] H. Hansson, B. Jonsson, A logic for reasoning about time and reliability,
Formal Aspects of Computing 6 (5) (1994) 512–535.

[23] A. Bianco, L. De Alfaro, Model checking of probabilistic and nonde-
terministic systems, in: Proceedings of the International Conference on
Foundations of Software Technology and Theoretical Computer Science,
Springer, 1995, pp. 499–513.

[24] D. S. Starnes, D. Yates, D. S. Moore, The practice of statistics, Macmil-
lan, 2010.

[25] H. Samin, N. Bencomo, P. Sawyer, Decision-making under uncertainty:
be aware of your priorities, Software and Systems Modeling (2022) 1–30.

[26] R Core Team, R: A Language and Environment for Statistical Comput-
ing, R Foundation for Statistical Computing, Vienna, Austria (2020).
URL https://www.R-project.org/

[27] D. Pfitzner, R. Leibbrandt, D. Powers, Characterization and evaluation
of similarity measures for pairs of clusterings, Knowledge and Informa-
tion Systems 19 (3) (2009) 361–394.

[28] F. Batool, C. Hennig, Clustering with the average silhouette width,
Computational Statistics & Data Analysis 158 (2021) 107190.

[29] A. Lengyel, Z. Botta-Dukát, Silhouette width using generalized mean—a
flexible method for assessing clustering efficiency, Ecology and Evolu-
tion 9 (23) (2019) 13231–13243. doi:https://doi.org/10.1002/ece3.
5774.

[30] G. Moreno, C. Kinneer, A. Pandey, D. Garlan, DARTSim: An exemplar
for evaluation and comparison of self-adaptation approaches for smart

55

https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/https://doi.org/10.1002/ece3.5774
https://doi.org/https://doi.org/10.1002/ece3.5774

cyber-physical systems, in: Proceedings of the 2019 IEEE/ACM 14th In-
ternational Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS), 2019, pp. 181–187. doi:10.1109/SEAMS.
2019.00031.

[31] N. Bencomo, K. Welsh, P. Sawyer, J. Whittle, Self-explanation in adap-
tive systems, in: Proceedings of the IEEE 17th International Confer-
ence on Engineering of Complex Computer Systems, 2012, pp. 157–166.
doi:10.1109/ICECCS20050.2012.6299211.

[32] A. B. Diallo, H. Nakagawa, T. Tsuchiya, Adaptation space reduction
using an explainable framework, in: Proceedings of the IEEE 45th An-
nual Computers, Software, and Applications Conference (COMPSAC),
2021, pp. 1653–1660. doi:10.1109/COMPSAC51774.2021.00247.

[33] N. Li, J. Camara, D. Garlan, B. Schmerl, Reasoning about when to
provide explanation for human-involved self-adaptive systems, in: Pro-
ceedings of the IEEE International Conference on Autonomic Comput-
ing and Self-Organizing Systems (ACSOS), 2020, pp. 195–204. doi:

10.1109/ACSOS49614.2020.00042.

[34] K. Welsh, N. Bencomo, P. Sawyer, J. Whittle, Self-explanation in adap-
tive systems based on runtime goal-based models, in: Transactions on
Computational Collective Intelligence XVI, Springer, 2014, pp. 122–145.

[35] O. Reynolds, A. Garćıa-Domı́nguez, N. Bencomo, Automated prove-
nance graphs for models@run.time, in: Proceedings of the 23rd
ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems (MODELS), 2020, pp. 1–10.

[36] A. Garcia Dominguez, N. Bencomo, J. M. Parra Ullauri, L. H. Gar-
cia Paucar, Towards history-aware self-adaptation with explanation ca-
pabilities, in: Proceedings of the IEEE 4th International Workshops
on Foundations and Applications of Self* Systems (FAS*W), 2019, pp.
18–23. doi:10.1109/FAS-W.2019.00018.

[37] J. Cámara, M. Silva, D. Garlan, B. Schmerl, Explaining architectural
design tradeoff spaces: A machine learning approach, in: Proceedings
of the 15th European Conference on Software Architecture (ECSA),
Springer International Publishing, Cham, 2021, pp. 49–65.

56

https://doi.org/10.1109/SEAMS.2019.00031
https://doi.org/10.1109/SEAMS.2019.00031
https://doi.org/10.1109/ICECCS20050.2012.6299211
https://doi.org/10.1109/COMPSAC51774.2021.00247
https://doi.org/10.1109/ACSOS49614.2020.00042
https://doi.org/10.1109/ACSOS49614.2020.00042
https://doi.org/10.1109/FAS-W.2019.00018

[38] A. Barredo Arrieta, N. Dı́az-Rodŕıguez, J. Del Ser, A. Bennetot,
S. Tabik, A. Barbado, S. Garcia, S. Gil-Lopez, D. Molina, R. Ben-
jamins, R. Chatila, F. Herrera, Explainable artificial intelligence (xai):
Concepts, taxonomies, opportunities and challenges toward responsible
ai, Information Fusion 58 (2020) 82–115. doi:https://doi.org/10.

1016/j.inffus.2019.12.012.

[39] J. M. Parra-Ullauri, A. Garćıa-Domı́nguez, N. Bencomo, C. Zheng,
C. Zhen, J. Boubeta-Puig, G. Ortiz, S. Yang, Event-driven tempo-
ral models for explanations-etemox: explaining reinforcement learning,
Software and Systems Modeling (2021) 1–23.

[40] Z. Juozapaitis, A. Koul, A. Fern, M. Erwig, F. Doshi-Velez, Explainable
reinforcement learning via reward decomposition, in: Proceedings of the
IJCAI/ECAI Workshop on Explainable Artificial Intelligence, 2019, pp.
1–7.

[41] B. Beyret, A. Shafti, A. A. Faisal, Dot-to-dot: Explainable hierarchi-
cal reinforcement learning for robotic manipulation, in: Proceedings of
the 2019 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2019, pp. 5014–5019. doi:10.1109/IROS40897.2019.
8968488.

[42] T. Chakraborti, S. Sreedharan, S. Kambhampati, The emerging land-
scape of explainable automated planning & decision making., in: Pro-
ceedings of the Twenty-Ninth International Joint Conference on Artifi-
cial Intelligence (IJCAI-20), 2020, pp. 4803–4811.

[43] R. Wohlrab, D. Garlan, Defining utility functions for multi-stakeholder
self-adaptive systems, in: Proceedings of the 27th International Work-
ing Conference on Requirement Engineering: Foundation for Software
Quality (REFSQ), Springer International, 2021, pp. 116–122.

[44] S. Cheng, D. Garlan, B. R. Schmerl, Evaluating the effectiveness of the
rainbow self-adaptive system, in: Proceedings of the 2009 ICSE Work-
shop on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS), 2009, pp. 132–141. doi:10.1109/SEAMS.2009.5069082.

[45] C. Barna, H. Ghanbari, M. Litoiu, M. Shtern, Hogna: A platform for
self-adaptive applications in cloud environments, in: P. Inverardi, B. R.

57

https://doi.org/https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1109/IROS40897.2019.8968488
https://doi.org/10.1109/IROS40897.2019.8968488
https://doi.org/10.1109/SEAMS.2009.5069082

Schmerl (Eds.), Proceedings of the 10th IEEE/ACM International Sym-
posium on Software Engineering for Adaptive and Self-Managing Sys-
tems (SEAMS), 2015, pp. 83–87. doi:10.1109/SEAMS.2015.26.

[46] D. Weyns, R. Calinescu, Tele assistance: A self-adaptive service-based
system exemplar, in: P. Inverardi, B. R. Schmerl (Eds.), Proceedings of
the 10th IEEE/ACM International Symposium on Software Engineering
for Adaptive and Self-Managing Systems (SEAMS), 2015, pp. 88–92.
doi:10.1109/SEAMS.2015.27.

[47] B. Zhang, F. Krikava, R. Rouvoy, L. Seinturier, Hadoop-benchmark:
Rapid prototyping and evaluation of self-adaptive behaviors in hadoop
clusters, in: Proceedings of the 12th IEEE/ACM International Sympo-
sium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS), 2017, pp. 175–181. doi:10.1109/SEAMS.2017.15.

[48] S. Schmid, I. Gerostathopoulos, C. Prehofer, T. Bures, Model Problem
(CrowdNav) and Framework (RTX) for Self-Adaptation Based on Big
Data Analytics (Artifact), Dagstuhl Artifacts Series 3 (1) (2017) 5:1–5:3.
doi:10.4230/DARTS.3.1.5.

[49] T. Vogel, mRUBiS: an exemplar for model-based architectural self-
healing and self-optimization, in: J. Andersson, D. Weyns (Eds.), Pro-
ceedings of the 13th International Conference on Software Engineering
for Adaptive and Self-Managing Systems (SEAMS), 2018, pp. 101–107.
doi:10.1145/3194133.3194161.

[50] W. Delnat, E. Truyen, A. Rafique, D. V. Landuyt, W. Joosen, K8-
scalar: a workbench to compare autoscalers for container-orchestrated
database clusters, in: J. Andersson, D. Weyns (Eds.), Proceedings of
the 13th International Conference on Software Engineering for Adaptive
and Self-Managing Systems (SEAMS), 2018, pp. 33–39. doi:10.1145/

3194133.3194162.

[51] G. A. Moreno, B. R. Schmerl, D. Garlan, SWIM: an exemplar for eval-
uation and comparison of self-adaptation approaches for web applica-
tions, in: J. Andersson, D. Weyns (Eds.), Proceedings of the 13th
International Conference on Software Engineering for Adaptive and
Self-Managing Systems (SEAMS), 2018, pp. 137–143. doi:10.1145/

3194133.3194163.

58

https://doi.org/10.1109/SEAMS.2015.26
https://doi.org/10.1109/SEAMS.2015.27
https://doi.org/10.1109/SEAMS.2017.15
https://doi.org/10.4230/DARTS.3.1.5
https://doi.org/10.1145/3194133.3194161
https://doi.org/10.1145/3194133.3194162
https://doi.org/10.1145/3194133.3194162
https://doi.org/10.1145/3194133.3194163
https://doi.org/10.1145/3194133.3194163

[52] J. Erbel, T. Brand, H. Giese, J. Grabowski, Occi-compliant, fully causal-
connected architecture runtime models supporting sensor management,
in: Proceedings of the 2019 IEEE/ACM 14th International Sympo-
sium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS), 2019, pp. 188–194. doi:10.1109/SEAMS.2019.00032.

[53] H. Samin, L. H. G. Paucar, N. Bencomo, C. M. C. Hurtado, E. M.
Fredericks, RDMSim: An exemplar for evaluation and comparison
of decision-making techniques for self-adaptation, in: Proceedings of
the 2021 International Symposium on Software Engineering for Adap-
tive and Self-Managing Systems (SEAMS), 2021, pp. 238–244. doi:

10.1109/SEAMS51251.2021.00039.

[54] J. Wuttke, Y. Brun, A. Gorla, J. Ramaswamy, Traffic routing for
evaluating self-adaptation, in: H. A. Müller, L. Baresi (Eds.), Pro-
ceedings of the 7th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems (SEAMS), 2012, pp. 27–32.
doi:10.1109/SEAMS.2012.6224388.

[55] P. H. Maia, L. Vieira, M. Chagas, Y. Yu, A. Zisman, B. Nuseibeh, Drag-
onfly: a tool for simulating self-adaptive drone behaviours, in: Proceed-
ings of the 2019 IEEE/ACM 14th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS), 2019,
pp. 107–113. doi:10.1109/SEAMS.2019.00022.

[56] S. Gerasimou, R. Calinescu, S. Shevtsov, D. Weyns, UNDERSEA: an ex-
emplar for engineering self-adaptive unmanned underwater vehicles, in:
Proceedings of the 12th IEEE/ACM International Symposium on Soft-
ware Engineering for Adaptive and Self-Managing Systems (SEAMS),
2017, pp. 83–89. doi:10.1109/SEAMS.2017.19.

[57] I. Gerostathopoulos, E. Pournaras, TRAPPed in traffic? a self-adaptive
framework for decentralized traffic optimization, in: Proceedings of the
2019 IEEE/ACM 14th International Symposium on Software Engineer-
ing for Adaptive and Self-Managing Systems (SEAMS), 2019, pp. 32–38.
doi:10.1109/SEAMS.2019.00014.

[58] M. Askarpour, C. Tsigkanos, C. Menghi, R. Calinescu, P. Pelliccione,
S. Garćıa, R. Caldas, T. J. von Oertzen, M. Wimmer, L. Berardinelli,
M. Rossi, M. M. Bersani, G. S. Rodrigues, RoboMAX: Robotic mission

59

https://doi.org/10.1109/SEAMS.2019.00032
https://doi.org/10.1109/SEAMS51251.2021.00039
https://doi.org/10.1109/SEAMS51251.2021.00039
https://doi.org/10.1109/SEAMS.2012.6224388
https://doi.org/10.1109/SEAMS.2019.00022
https://doi.org/10.1109/SEAMS.2017.19
https://doi.org/10.1109/SEAMS.2019.00014

adaptation exemplars, in: Proceedings of the 2021 International Sympo-
sium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS), 2021, pp. 245–251. doi:10.1109/SEAMS51251.2021.00040.

[59] R. Al Ali, T. Bures, I. Gerostathopoulos, P. Hnetynka, J. Keznikl,
M. Kit, F. Plasil, DEECo: An ecosystem for cyber-physical systems, in:
Proceedings of the 36th International Conference on Software Engineer-
ing (ICSE-C), 2014, pp. 610––611. doi:10.1145/2591062.2591140.

[60] A. Bennaceur, C. McCormick, J. G. Galán, C. Perera, A. Smith, A. Zis-
man, B. Nuseibeh, Feed me, feed me: An exemplar for engineering
adaptive software, in: Proceedings of the 11th International Sympo-
sium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS), 2016, p. 89–95. doi:10.1145/2897053.2897071.

[61] M. U. Iftikhar, G. S. Ramachandran, P. Bollansée, D. Weyns, D. Hughes,
DeltaIoT: A self-adaptive internet of things exemplar, in: Proceedings of
the 12th IEEE/ACM International Symposium on Software Engineering
for Adaptive and Self-Managing Systems (SEAMS), 2017, pp. 76–82.
doi:10.1109/SEAMS.2017.21.

[62] F. Krijt, Z. Jirácek, T. Bures, P. Hnetynka, I. Gerostathopoulos, In-
telligent ensembles - A declarative group description language and java
framework, in: Proceedings of the 12th IEEE/ACM International Sym-
posium on Software Engineering for Adaptive and Self-Managing Sys-
tems (SEAMS), 2017, pp. 116–122. doi:10.1109/SEAMS.2017.17.

[63] M. Provoost, D. Weyns, DingNet: A self-adaptive internet-of-things ex-
emplar, in: Proceedings of the 2019 IEEE/ACM 14th International Sym-
posium on Software Engineering for Adaptive and Self-Managing Sys-
tems (SEAMS), 2019, pp. 195–201. doi:10.1109/SEAMS.2019.00033.

[64] C. Tsigkanos, L. Nenzi, M. Loreti, M. Garriga, S. Dustdar, C. Ghezzi,
Inferring analyzable models from trajectories of spatially-distributed in-
ternet of things, in: Proceedings of the 2019 IEEE/ACM 14th Inter-
national Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS), 2019, pp. 100–106. doi:10.1109/SEAMS.
2019.00021.

60

https://doi.org/10.1109/SEAMS51251.2021.00040
https://doi.org/10.1145/2591062.2591140
https://doi.org/10.1145/2897053.2897071
https://doi.org/10.1109/SEAMS.2017.21
https://doi.org/10.1109/SEAMS.2017.17
https://doi.org/10.1109/SEAMS.2019.00033
https://doi.org/10.1109/SEAMS.2019.00021
https://doi.org/10.1109/SEAMS.2019.00021

[65] Y.-J. Shin, L. Liu, S. Hyun, D.-H. Bae, Platooning LEGOs: An
open physical exemplar for engineering self-adaptive cyber-physical
systems-of-systems, in: Proceedings of the 2021 International Sympo-
sium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS), 2021, pp. 231–237. doi:10.1109/SEAMS51251.2021.00038.

[66] E. B. Gil, R. Caldas, A. Rodrigues, G. L. G. da Silva, G. N. Rodrigues,
P. Pelliccione, Body sensor network: A self-adaptive system exemplar in
the healthcare domain, in: Proceedings of the 2021 International Sympo-
sium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS), 2021, pp. 224–230. doi:10.1109/SEAMS51251.2021.00037.

[67] R. Hoffman, S. Mueller, G. Klein, J. Litman, Metrics for explainable AI:
Challenges and prospects, XAI Metrics (12 2018).

[68] G. A. Moreno, O. Strichman, S. Chaki, R. Vaisman, Decision-making
with cross-entropy for self-adaptation, in: Proceedings of the 2017
IEEE/ACM 12th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems (SEAMS), 2017, pp. 90–101.
doi:10.1109/SEAMS.2017.7.

61

https://doi.org/10.1109/SEAMS51251.2021.00038
https://doi.org/10.1109/SEAMS51251.2021.00037
https://doi.org/10.1109/SEAMS.2017.7

	Introduction
	Example: Robot mission planning
	Automated Planning with Markov Decision Processes
	Approach
	Requirements
	Methodology and Tool Support
	Selected Machine Learning Techniques
	Data Filtering and Extraction

	Analyzing Quality Tradeoffs using Machine Learning Techniques
	Principal Component Analysis (PCA)
	Multiple Correspondence Analysis (MCA)
	Clustering Algorithms
	Decision Tree Learning
	Summary

	Evaluation
	Evaluation Method
	Evaluation Results
	DARTSim System (RQ1)
	Tradeoff between Information Reduction and Explained Variance (RQ2)

	Threats to Validity

	Related Work
	Discussion
	Conclusions

